A new method of inference of ancestral nucleotide and amino acid sequences.

最大节俭 生物 系统发育学 系统发育树 现存分类群 氨基酸 遗传学 树(集合论) 序列(生物学) 进化生物学 组合数学 数学 基因 克莱德
作者
Zefeng Yang,Sudhir Kumar,M Nei
出处
期刊:Genetics [Oxford University Press]
卷期号:141 (4): 1641-1650 被引量:730
标识
DOI:10.1093/genetics/141.4.1641
摘要

Abstract A statistical method was developed for reconstructing the nucleotide or amino acid sequences of extinct ancestors, given the phylogeny and sequences of the extant species. A model of nucleotide or amino acid substitution was employed to analyze data of the present-day sequences, and maximum likelihood estimates of parameters such as branch lengths were used to compare the posterior probabilities of assignments of character states (nucleotides or amino acids) to interior nodes of the tree; the assignment having the highest probability was the best reconstruction at the site. The lysozyme c sequences of six mammals were analyzed by using the likelihood and parsimony methods. The new likelihood-based method was found to be superior to the parsimony method. The probability that the amino acids for all interior nodes at a site reconstructed by the new method are correct was calculated to be 0.91, 0.86, and 0.73 for all, variable, and parsimony-informative sites, respectively, whereas the corresponding probabilities for the parsimony method were 0.84, 0.76, and 0.51, respectively. The probability that an amino acid in an ancestral sequence is correctly reconstructed by the likelihood analysis ranged from 91.3 to 98.7% for the four ancestral sequences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhpass发布了新的文献求助10
1秒前
NexusExplorer应助潘2333采纳,获得10
1秒前
砰砰发布了新的文献求助10
1秒前
852应助zpl采纳,获得10
2秒前
2秒前
domkps完成签到 ,获得积分0
3秒前
cccc完成签到,获得积分10
3秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
大脸猫完成签到 ,获得积分10
6秒前
7秒前
赘婿应助实验鱼采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
黛西完成签到,获得积分10
8秒前
9秒前
丘比特应助我我我采纳,获得10
9秒前
X519664508完成签到,获得积分10
10秒前
10秒前
砰砰完成签到,获得积分10
10秒前
吕峰发布了新的文献求助10
11秒前
云漪完成签到,获得积分10
11秒前
11秒前
Jiangbs发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
ywl发布了新的文献求助10
14秒前
潘2333发布了新的文献求助10
14秒前
15秒前
15秒前
黛西发布了新的文献求助10
16秒前
冰可乐发布了新的文献求助10
16秒前
cccczy发布了新的文献求助10
17秒前
共享精神应助憨憨采纳,获得10
17秒前
liuxian发布了新的文献求助10
18秒前
19秒前
卤化氢发布了新的文献求助10
19秒前
19秒前
细腻荔枝完成签到 ,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693462
求助须知:如何正确求助?哪些是违规求助? 5093130
关于积分的说明 15211816
捐赠科研通 4850452
什么是DOI,文献DOI怎么找? 2601739
邀请新用户注册赠送积分活动 1553549
关于科研通互助平台的介绍 1511540