Selection of extreme phenotypes: the role of clinical observation in translational research

表型 疾病 医学 选择(遗传算法) 鉴定(生物学) 癌症 计算生物学 生物信息学 临床表型 生物 遗传学 病理 基因 内科学 计算机科学 植物 人工智能
作者
José Luis Pérez‐Gracia,Alfonso Gúrpide,María Gloria Ruiz-Ilundáin,Carlos Alfaro Alegría,Rámón Colomer,Jesús García‐Foncillas,Ignacio Melero
出处
期刊:Clinical & Translational Oncology [Springer Science+Business Media]
卷期号:12 (3): 174-180 被引量:38
标识
DOI:10.1007/s12094-010-0487-7
摘要

Systematic collection of phenotypes and their correlation with molecular data has been proposed as a useful method to advance in the study of disease. Although some databases for animal species are being developed, progress in humans is slow, probably due to the multifactorial origin of many human diseases and to the intricacy of accurately classifying phenotypes, among other factors. An alternative approach has been to identify and to study individuals or families with very characteristic, clinically relevant phenotypes. This strategy has shown increased efficiency to identify the molecular features underlying such phenotypes. While on most occasions the subjects selected for these studies presented harmful phenotypes, a few studies have been performed in individuals with very favourable phenotypes. The consistent results achieved suggest that it seems logical to further develop this strategy as a methodology to study human disease, including cancer. The identification and the study with high-throughput techniques of individuals showing a markedly decreased risk of developing cancer or of cancer patients presenting either an unusually favourable prognosis or striking responses following a specific treatment, might be promising ways to maximize the yield of this approach and to reveal the molecular causes that explain those phenotypes and thus highlight useful therapeutic targets. This manuscript reviews the current status of selection of extreme phenotypes in cancer research and provides directions for future development of this methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高高千琴发布了新的文献求助10
5秒前
贪玩的篮球完成签到,获得积分10
8秒前
淡淡奇异果完成签到,获得积分10
9秒前
bc应助苏卿采纳,获得30
10秒前
10秒前
ccccc完成签到,获得积分10
10秒前
Ben发布了新的文献求助10
12秒前
苏源智发布了新的文献求助10
13秒前
小巧问柳完成签到,获得积分10
13秒前
111完成签到 ,获得积分10
15秒前
小马甲应助加油搬砖采纳,获得10
16秒前
18秒前
福福完成签到 ,获得积分10
19秒前
mely完成签到 ,获得积分10
19秒前
专一的访文完成签到,获得积分10
21秒前
橙汁完成签到 ,获得积分10
23秒前
24秒前
Dragon完成签到 ,获得积分10
27秒前
27秒前
FF完成签到 ,获得积分10
27秒前
dzx完成签到 ,获得积分10
28秒前
29秒前
zhaoxiao完成签到 ,获得积分10
31秒前
32秒前
32秒前
潍澤完成签到,获得积分10
33秒前
英俊的铭应助小林采纳,获得10
36秒前
37秒前
十一发布了新的文献求助10
37秒前
38秒前
39秒前
40秒前
uniquearcher完成签到,获得积分10
40秒前
Blessing发布了新的文献求助10
41秒前
科研通AI5应助传统的太清采纳,获得10
41秒前
SciGPT应助科研通管家采纳,获得10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
书生应助科研通管家采纳,获得10
41秒前
NexusExplorer应助科研通管家采纳,获得10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959