Epidemic threshold and topological structure of susceptible-infectious-susceptible epidemics in adaptive networks

拓扑(电路) 欧米茄 缩放比例 模块化(生物学) 亚稳态 学位分布 复杂网络 物理 统计物理学 数学 组合数学 量子力学 生物 几何学 遗传学
作者
Dongchao Guo,Stojan Trajanovski,Ruud van de Bovenkamp,Huijuan Wang,Piet Van Mieghem
出处
期刊:Physical Review E [American Physical Society]
卷期号:88 (4) 被引量:80
标识
DOI:10.1103/physreve.88.042802
摘要

The interplay between disease dynamics on a network and the dynamics of the structure of that network characterizes many real-world systems of contacts. A continuous-time adaptive susceptible-infectious-susceptible (ASIS) model is introduced in order to investigate this interaction, where a susceptible node avoids infections by breaking its links to its infected neighbors while it enhances the connections with other susceptible nodes by creating links to them. When the initial topology of the network is a complete graph, an exact solution to the average metastable-state fraction of infected nodes is derived without resorting to any mean-field approximation. A linear scaling law of the epidemic threshold ${\ensuremath{\tau}}_{c}$ as a function of the effective link-breaking rate $\ensuremath{\omega}$ is found. Furthermore, the bifurcation nature of the metastable fraction of infected nodes of the ASIS model is explained. The metastable-state topology shows high connectivity and low modularity in two regions of the $\ensuremath{\tau},\ensuremath{\omega}$ plane for any effective infection rate $\ensuremath{\tau}>{\ensuremath{\tau}}_{c}$: (i) a ``strongly adaptive'' region with very high $\ensuremath{\omega}$ and (ii) a ``weakly adaptive'' region with very low $\ensuremath{\omega}$. These two regions are separated from the other half-open elliptical-like regions of low connectivity and high modularity in a contour-line-like way. Our results indicate that the adaptation of the topology in response to disease dynamics suppresses the infection, while it promotes the network evolution towards a topology that exhibits assortative mixing, modularity, and a binomial-like degree distribution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就的迎夏完成签到,获得积分10
1秒前
Howard完成签到,获得积分10
1秒前
2秒前
JamesPei应助1111采纳,获得10
4秒前
西西完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
Chaos完成签到,获得积分10
6秒前
6秒前
7秒前
li发布了新的文献求助10
7秒前
xiaowentu完成签到,获得积分10
8秒前
学术五车发布了新的文献求助10
9秒前
西西弗斯发布了新的文献求助10
9秒前
9秒前
杨66发布了新的文献求助10
9秒前
璀璨发布了新的文献求助10
10秒前
11秒前
丘比特应助圭臬采纳,获得10
12秒前
qc发布了新的文献求助10
12秒前
内向蜡烛完成签到,获得积分10
12秒前
Lucas应助无限paper采纳,获得30
12秒前
Akim应助劉平果采纳,获得10
13秒前
张宝完成签到,获得积分10
13秒前
AJO发布了新的文献求助10
14秒前
科研通AI6应助爱听歌时光采纳,获得10
14秒前
15秒前
15秒前
15秒前
准炮打不准完成签到,获得积分10
16秒前
斯文败类应助sunset5min采纳,获得20
16秒前
17秒前
bkagyin应助璀璨采纳,获得10
17秒前
18秒前
无花果应助年少的人采纳,获得10
18秒前
yang完成签到,获得积分10
19秒前
19秒前
20秒前
卢洁发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355483
求助须知:如何正确求助?哪些是违规求助? 4487366
关于积分的说明 13969755
捐赠科研通 4387995
什么是DOI,文献DOI怎么找? 2410805
邀请新用户注册赠送积分活动 1403340
关于科研通互助平台的介绍 1376902