The solution of nonlinear inverse problems and the Levenberg-Marquardt method

反向 算法 人工神经网络 计算机科学 数学分析 反演(地质)
作者
Jose Pujol
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:72 (4) 被引量:159
标识
DOI:10.1190/1.2732552
摘要

Although the Levenberg-Marquardt damped least-squares method is an extremely powerful tool for the iterative solution of nonlinear problems, its theoretical basis has not been described adequately in the literature. This is unfortunate, because Levenberg and Marquardt approached the solution of nonlinear problems in different ways and presented results that go far beyond the simple equation that characterizes the method. The idea of damping the solution was introduced by Levenberg, who also showed that it is possible to do that while at the same time reducing the value of a function that must be minimized iteratively. This result is not obvious, although it is taken for granted. Moreover, Levenberg derived a solution more general than the one currently used. Marquardt started with the current equation and showed that it interpolates between the ordinary least-squares-method and the steepest-descent method. In this tutorial, the two papers are combined into a unified presentation, which will help the reader gain a better understanding of what happens when solving nonlinear problems. Because the damped least-squares and steepest-descent methods are intimately related, the latter is also discussed, in particular in its relation to the gradient. When the inversion parameters have the same dimensions (and units), the direction of steepest descent is equal to the direction of minus the gradient. In other cases, it is necessary to introduce a metric (i.e., a definition of distance) in the parameter space to establish a relation between the two directions. Although neither Levenberg nor Marquardt discussed these matters, their results imply the introduction of a metric. Some of the concepts presented here are illustrated with the inversion of synthetic gravity data corresponding to a buried sphere of unknown radius and depth. Finally, the work done by early researchers that rediscovered the damped least-squares method is put into a historical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助ggb采纳,获得10
3秒前
33完成签到 ,获得积分10
6秒前
2032jia应助BaekHyun采纳,获得10
6秒前
杨zhen发布了新的文献求助10
8秒前
有魅力凉面完成签到 ,获得积分20
8秒前
dd完成签到 ,获得积分10
8秒前
Hale完成签到,获得积分0
13秒前
14秒前
16秒前
笨笨寒天发布了新的文献求助10
20秒前
KYJR发布了新的文献求助10
20秒前
panda发布了新的文献求助10
21秒前
Ava应助隐形的颦采纳,获得10
23秒前
在水一方应助hmfyl采纳,获得10
23秒前
26秒前
小慧儿完成签到 ,获得积分10
26秒前
Yann完成签到 ,获得积分10
27秒前
沙海冬完成签到,获得积分10
27秒前
愉快的新波完成签到,获得积分20
27秒前
Orange应助ChemMa采纳,获得10
28秒前
29秒前
暴躁的冰旋完成签到,获得积分10
30秒前
30秒前
Dsunflower完成签到 ,获得积分10
31秒前
李健的粉丝团团长应助Liu采纳,获得10
32秒前
32秒前
婷婷完成签到,获得积分10
32秒前
香蕉白容发布了新的文献求助10
33秒前
笨笨寒天完成签到,获得积分10
34秒前
领导范儿应助sdja158采纳,获得10
35秒前
35秒前
laity发布了新的文献求助30
36秒前
婷婷发布了新的文献求助10
36秒前
KYJR完成签到,获得积分10
36秒前
yar应助杨zhen采纳,获得10
36秒前
37秒前
Orange应助陈那个希采纳,获得10
39秒前
WHR发布了新的文献求助10
39秒前
852应助shimly0101xx采纳,获得10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264392
求助须知:如何正确求助?哪些是违规求助? 2904482
关于积分的说明 8330528
捐赠科研通 2574750
什么是DOI,文献DOI怎么找? 1399369
科研通“疑难数据库(出版商)”最低求助积分说明 654478
邀请新用户注册赠送积分活动 633194