The solution of nonlinear inverse problems and the Levenberg-Marquardt method

Levenberg-Marquardt算法 梯度下降 最速下降法 下降方向 下降(航空) 非线性系统 非线性最小二乘法 反向 最小二乘函数近似 数学 应用数学 反问题 公制(单位) 简单(哲学) 算法 人工神经网络 数学优化 计算机科学 数学分析 反演(地质) 估计理论 人工智能 统计 几何学 古生物学 生物 工程类 航空航天工程 构造盆地 经济 物理 量子力学 认识论 估计员 运营管理 哲学
作者
José Pujol
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:72 (4): W1-W16 被引量:237
标识
DOI:10.1190/1.2732552
摘要

Although the Levenberg-Marquardt damped least-squares method is an extremely powerful tool for the iterative solution of nonlinear problems, its theoretical basis has not been described adequately in the literature. This is unfortunate, because Levenberg and Marquardt approached the solution of nonlinear problems in different ways and presented results that go far beyond the simple equation that characterizes the method. The idea of damping the solution was introduced by Levenberg, who also showed that it is possible to do that while at the same time reducing the value of a function that must be minimized iteratively. This result is not obvious, although it is taken for granted. Moreover, Levenberg derived a solution more general than the one currently used. Marquardt started with the current equation and showed that it interpolates between the ordinary least-squares-method and the steepest-descent method. In this tutorial, the two papers are combined into a unified presentation, which will help the reader gain a better understanding of what happens when solving nonlinear problems. Because the damped least-squares and steepest-descent methods are intimately related, the latter is also discussed, in particular in its relation to the gradient. When the inversion parameters have the same dimensions (and units), the direction of steepest descent is equal to the direction of minus the gradient. In other cases, it is necessary to introduce a metric (i.e., a definition of distance) in the parameter space to establish a relation between the two directions. Although neither Levenberg nor Marquardt discussed these matters, their results imply the introduction of a metric. Some of the concepts presented here are illustrated with the inversion of synthetic gravity data corresponding to a buried sphere of unknown radius and depth. Finally, the work done by early researchers that rediscovered the damped least-squares method is put into a historical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gfjh发布了新的文献求助10
刚刚
qiuwuji完成签到 ,获得积分10
1秒前
cssfsa发布了新的文献求助100
4秒前
tanshy完成签到,获得积分10
5秒前
ding应助林狗采纳,获得10
6秒前
Suliove发布了新的文献求助10
6秒前
研友_VZG7GZ应助TiAmo采纳,获得10
6秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
跳跃的翼完成签到,获得积分10
9秒前
10秒前
情怀应助梁辉采纳,获得10
10秒前
乙醇完成签到 ,获得积分10
10秒前
浮游应助超帅从彤采纳,获得10
11秒前
11秒前
linlin发布了新的文献求助10
12秒前
脑洞疼应助着急的寒天采纳,获得10
12秒前
笃定完成签到,获得积分10
12秒前
赵yy应助子清采纳,获得10
13秒前
菜菜就爱玩完成签到,获得积分10
13秒前
欣喜依白完成签到,获得积分10
13秒前
小周发布了新的文献求助10
13秒前
脑洞疼应助cssfsa采纳,获得10
14秒前
replica完成签到,获得积分10
14秒前
诸茹嫣发布了新的文献求助10
15秒前
yy发布了新的文献求助10
16秒前
17秒前
沉默南露发布了新的文献求助30
17秒前
18秒前
19秒前
20秒前
Ray羽曦~完成签到,获得积分10
20秒前
HFan发布了新的文献求助10
21秒前
粱乘风完成签到,获得积分10
21秒前
22秒前
孟严青完成签到 ,获得积分0
23秒前
CY发布了新的文献求助10
24秒前
25秒前
王诗琪完成签到,获得积分10
25秒前
Hello应助TiAmo采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424545
求助须知:如何正确求助?哪些是违规求助? 4538904
关于积分的说明 14164157
捐赠科研通 4455851
什么是DOI,文献DOI怎么找? 2443924
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412438