亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The solution of nonlinear inverse problems and the Levenberg-Marquardt method

Levenberg-Marquardt算法 梯度下降 最速下降法 下降方向 下降(航空) 非线性系统 非线性最小二乘法 反向 最小二乘函数近似 数学 应用数学 反问题 公制(单位) 简单(哲学) 算法 人工神经网络 数学优化 计算机科学 数学分析 反演(地质) 估计理论 人工智能 统计 几何学 哲学 航空航天工程 古生物学 构造盆地 物理 生物 经济 认识论 量子力学 估计员 工程类 运营管理
作者
José Pujol
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:72 (4): W1-W16 被引量:237
标识
DOI:10.1190/1.2732552
摘要

Although the Levenberg-Marquardt damped least-squares method is an extremely powerful tool for the iterative solution of nonlinear problems, its theoretical basis has not been described adequately in the literature. This is unfortunate, because Levenberg and Marquardt approached the solution of nonlinear problems in different ways and presented results that go far beyond the simple equation that characterizes the method. The idea of damping the solution was introduced by Levenberg, who also showed that it is possible to do that while at the same time reducing the value of a function that must be minimized iteratively. This result is not obvious, although it is taken for granted. Moreover, Levenberg derived a solution more general than the one currently used. Marquardt started with the current equation and showed that it interpolates between the ordinary least-squares-method and the steepest-descent method. In this tutorial, the two papers are combined into a unified presentation, which will help the reader gain a better understanding of what happens when solving nonlinear problems. Because the damped least-squares and steepest-descent methods are intimately related, the latter is also discussed, in particular in its relation to the gradient. When the inversion parameters have the same dimensions (and units), the direction of steepest descent is equal to the direction of minus the gradient. In other cases, it is necessary to introduce a metric (i.e., a definition of distance) in the parameter space to establish a relation between the two directions. Although neither Levenberg nor Marquardt discussed these matters, their results imply the introduction of a metric. Some of the concepts presented here are illustrated with the inversion of synthetic gravity data corresponding to a buried sphere of unknown radius and depth. Finally, the work done by early researchers that rediscovered the damped least-squares method is put into a historical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Soleil发布了新的文献求助10
1秒前
执着亿先发布了新的文献求助10
4秒前
是个哑巴发布了新的文献求助10
5秒前
5秒前
Xiaoping完成签到 ,获得积分10
5秒前
于涵艺完成签到,获得积分10
7秒前
汉堡包应助123采纳,获得10
8秒前
明亮紫易完成签到,获得积分10
10秒前
不信人间有白头完成签到 ,获得积分10
12秒前
冉亦完成签到,获得积分10
15秒前
彭于晏应助是个哑巴采纳,获得10
16秒前
在水一方应助123采纳,获得10
22秒前
linfordlu发布了新的文献求助30
28秒前
28秒前
28秒前
科研通AI6应助执着亿先采纳,获得10
29秒前
江夏完成签到 ,获得积分10
31秒前
瓜兮兮CYY发布了新的文献求助10
31秒前
懒洋洋发布了新的文献求助10
33秒前
贪玩的万仇完成签到 ,获得积分10
34秒前
Akim应助瓜兮兮CYY采纳,获得10
37秒前
共享精神应助Soleil采纳,获得10
39秒前
谨慎采白完成签到 ,获得积分10
40秒前
LB完成签到,获得积分0
43秒前
Owen应助科研通管家采纳,获得10
44秒前
852应助科研通管家采纳,获得10
44秒前
852应助科研通管家采纳,获得10
44秒前
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
充电宝应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
SciGPT应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
科研通AI2S应助123采纳,获得10
50秒前
55秒前
58秒前
1分钟前
LB发布了新的文献求助30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657742
求助须知:如何正确求助?哪些是违规求助? 4811989
关于积分的说明 15080182
捐赠科研通 4815962
什么是DOI,文献DOI怎么找? 2576976
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490512