The solution of nonlinear inverse problems and the Levenberg-Marquardt method

Levenberg-Marquardt算法 梯度下降 最速下降法 下降方向 下降(航空) 非线性系统 非线性最小二乘法 反向 最小二乘函数近似 数学 应用数学 反问题 公制(单位) 简单(哲学) 算法 人工神经网络 数学优化 计算机科学 数学分析 反演(地质) 估计理论 人工智能 统计 几何学 古生物学 生物 工程类 航空航天工程 构造盆地 经济 物理 量子力学 认识论 估计员 运营管理 哲学
作者
José Pujol
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:72 (4): W1-W16 被引量:237
标识
DOI:10.1190/1.2732552
摘要

Although the Levenberg-Marquardt damped least-squares method is an extremely powerful tool for the iterative solution of nonlinear problems, its theoretical basis has not been described adequately in the literature. This is unfortunate, because Levenberg and Marquardt approached the solution of nonlinear problems in different ways and presented results that go far beyond the simple equation that characterizes the method. The idea of damping the solution was introduced by Levenberg, who also showed that it is possible to do that while at the same time reducing the value of a function that must be minimized iteratively. This result is not obvious, although it is taken for granted. Moreover, Levenberg derived a solution more general than the one currently used. Marquardt started with the current equation and showed that it interpolates between the ordinary least-squares-method and the steepest-descent method. In this tutorial, the two papers are combined into a unified presentation, which will help the reader gain a better understanding of what happens when solving nonlinear problems. Because the damped least-squares and steepest-descent methods are intimately related, the latter is also discussed, in particular in its relation to the gradient. When the inversion parameters have the same dimensions (and units), the direction of steepest descent is equal to the direction of minus the gradient. In other cases, it is necessary to introduce a metric (i.e., a definition of distance) in the parameter space to establish a relation between the two directions. Although neither Levenberg nor Marquardt discussed these matters, their results imply the introduction of a metric. Some of the concepts presented here are illustrated with the inversion of synthetic gravity data corresponding to a buried sphere of unknown radius and depth. Finally, the work done by early researchers that rediscovered the damped least-squares method is put into a historical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咸蛋超人发布了新的文献求助10
刚刚
2秒前
2秒前
西乡塘塘主完成签到,获得积分10
4秒前
科研通AI5应助小畅采纳,获得10
5秒前
5秒前
诸岩完成签到,获得积分10
7秒前
美好海瑶发布了新的文献求助10
7秒前
WJF完成签到,获得积分10
7秒前
7秒前
8秒前
浮游应助奇奇采纳,获得10
8秒前
turky90发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
无花果应助夜莺采纳,获得10
11秒前
天天快乐应助夜莺采纳,获得10
11秒前
changping应助夜莺采纳,获得10
11秒前
微笑霸完成签到,获得积分10
11秒前
我要发一刊完成签到 ,获得积分10
13秒前
14秒前
科研通AI5应助鲤鱼天奇采纳,获得10
15秒前
16秒前
ken发布了新的文献求助10
16秒前
17秒前
19秒前
doctor_loong完成签到,获得积分10
20秒前
21秒前
zhangzhang发布了新的文献求助10
21秒前
22秒前
mispring发布了新的文献求助10
22秒前
22秒前
anyig完成签到,获得积分10
22秒前
craccola完成签到,获得积分10
22秒前
樊依吟发布了新的文献求助10
23秒前
doctor_loong发布了新的文献求助10
24秒前
善学以致用应助小熊采纳,获得10
24秒前
24秒前
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5121136
求助须知:如何正确求助?哪些是违规求助? 4326371
关于积分的说明 13479415
捐赠科研通 4160135
什么是DOI,文献DOI怎么找? 2279852
邀请新用户注册赠送积分活动 1281637
关于科研通互助平台的介绍 1220557