Hum-mPLoc: An ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites

分类器(UML) 亚细胞定位 计算机科学 数据挖掘 人工智能 计算生物学 模式识别(心理学) 生物 生物化学 细胞质 艺术史 艺术 表演艺术
作者
Hong‐Bin Shen,Kuo‐Chen Chou
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:355 (4): 1006-1011 被引量:196
标识
DOI:10.1016/j.bbrc.2007.02.071
摘要

Proteins may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. For instance, among the 6408 human protein entries that have experimentally observed subcellular location annotations in the Swiss-Prot database (version 50.7, released 19-Sept-2006), 973 (≈15%) have multiple location sites. The number of total human protein entries (except those annotated with "fragment" or those with less than 50 amino acids) in the same database is 14,370, meaning a gap of (14,370 − 6408) = 7962 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the gap, so far all the existing methods for predicting human protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Hum-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Hum-mPLoc is freely accessible to the public as a web server at http://202.120.37.186/bioinf/hum-multi. Meanwhile, for the convenience of people working in the relevant areas, Hum-mPLoc has been used to identify all human protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Hum-mPLoc.xls". This file is available at the same website and will be updated twice a year to include new entries of human proteins and reflect the continuous development of Hum-mPLoc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
木子三少完成签到,获得积分0
3秒前
3秒前
3秒前
4秒前
青寻发布了新的文献求助10
4秒前
5秒前
醉熏的绝音完成签到,获得积分10
5秒前
Joan.完成签到,获得积分10
7秒前
天秀之合发布了新的文献求助10
7秒前
7秒前
幻梦发布了新的文献求助10
8秒前
研友_8o7178发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
打打应助无足鸟采纳,获得10
9秒前
唐可可完成签到,获得积分10
11秒前
纯情的惜海完成签到,获得积分10
11秒前
罗博超发布了新的文献求助10
12秒前
幻梦完成签到,获得积分10
13秒前
kksk发布了新的文献求助10
14秒前
汎影发布了新的文献求助10
16秒前
19秒前
流萤发布了新的文献求助10
19秒前
不配.应助半壶月色半边天采纳,获得10
19秒前
19秒前
hhhhccer完成签到,获得积分10
21秒前
wanci应助勤奋的花生采纳,获得10
22秒前
24秒前
TtCherry完成签到,获得积分10
24秒前
26秒前
27秒前
27秒前
途中发布了新的文献求助10
30秒前
Owen应助果果采纳,获得10
31秒前
32秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 500
Natural History of Mantodea 螳螂的自然史 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124684
求助须知:如何正确求助?哪些是违规求助? 2775048
关于积分的说明 7725009
捐赠科研通 2430539
什么是DOI,文献DOI怎么找? 1291201
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323