Short-channel effects in thin-film silicon-on-insulator (SOI) MOSFETs are shown to be unique because of dependences on film thickness and body and back-gate (substrate) biases. These dependences enable control of threshold-voltage reduction, channel-charge enhancement due to a drain bias, carrier velocity saturation, channel-length modulation and its effect on output conductance, as well as device degradation due to hot carriers in short-channel SOI MOSFETs. A short-channel effect exclusive to SOI MOSFETs, back-surface charge modulation, is described. Because of the short-channel effects, the use of SOI MOSFETs in VLSI circuits provides the designer with additional flexibility as compared to bulk-MOSFET design. Various design tradeoffs are discussed.< >