Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control

警卫室 胞浆 违反直觉 系统生物学 液泡 平衡 细胞生物学 生物物理学 Guard(计算机科学) 光合作用 生物 生物系统 化学 计算机科学 植物 计算生物学 生物化学 物理 细胞质 量子力学 程序设计语言
作者
Zhong-Hua Chen,Adrian Hills,Ulrike Bätz,Anna Amtmann,Virgilio L. Lew,Michael R. Blatt
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:159 (3): 1235-1251 被引量:136
标识
DOI:10.1104/pp.112.197350
摘要

Abstract The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mal) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H+, K+, Cl−, and Mal concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca2+ concentration and an exchange of vacuolar Cl− with Mal, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lv完成签到,获得积分10
1秒前
1秒前
丰富的冰棍完成签到 ,获得积分10
1秒前
2秒前
2秒前
糖呼噜完成签到,获得积分10
2秒前
2秒前
马麻薯完成签到,获得积分0
3秒前
刘奎冉发布了新的文献求助10
5秒前
卫半山完成签到 ,获得积分10
5秒前
科研通AI6应助crome采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
不想读书发布了新的文献求助10
6秒前
6秒前
6秒前
害怕的雁完成签到,获得积分10
6秒前
SciGPT应助糖呼噜采纳,获得10
6秒前
7秒前
ding发布了新的文献求助10
7秒前
8秒前
爆米花应助wumengxin采纳,获得10
9秒前
东方欲晓完成签到,获得积分10
9秒前
9秒前
打打应助邵珠洋采纳,获得10
10秒前
求助人员发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
sunny完成签到,获得积分10
12秒前
猫的太阳发布了新的文献求助10
12秒前
12秒前
张兴博完成签到,获得积分10
13秒前
13秒前
小满完成签到,获得积分20
14秒前
14秒前
15秒前
15秒前
苏苏完成签到,获得积分10
16秒前
科研通AI6应助lankeren采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460985
求助须知:如何正确求助?哪些是违规求助? 4566080
关于积分的说明 14303083
捐赠科研通 4491670
什么是DOI,文献DOI怎么找? 2460439
邀请新用户注册赠送积分活动 1449757
关于科研通互助平台的介绍 1425537