A biomimetic multi-layered collagen-based scaffold for osteochondral repair

脚手架 材料科学 生物医学工程 组织工程 仿生材料 复合材料 纳米技术 工程类
作者
Tanya J. Levingstone,Amos Matsiko,Glenn R. Dickson,Fergal J. O’Brien,John P. Gleeson
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:10 (5): 1996-2004 被引量:248
标识
DOI:10.1016/j.actbio.2014.01.005
摘要

Cartilage and osteochondral defects pose a significant challenge in orthopedics. Tissue engineering has shown promise as a potential method for the treatment of such defects; however, a long-lasting repair strategy has yet to be realized. This study focuses on the development of a layered construct for osteochondral repair, fabricated through a novel "iterative layering" freeze-drying technique. The process involved repeated steps of layer addition followed by freeze-drying, enabling control over material composition, pore size and substrate stiffness in each region of the construct, while also achieving a seamlessly integrated layer structure. The novel construct developed mimics the inherent gradient structure of healthy osteochondral tissue: a bone layer composed of type I collagen and hydroxyapatite (HA), an intermediate layer composed of type I collagen, type II collagen and HA and a cartilaginous region composed of type I collagen, type II collagen and hyaluronic acid. The material properties were designed to provide the biological cues required to encourage infiltration of host cells from the bone marrow while the biomechanical properties were designed to provide an environment optimized to promote differentiation of these cells towards the required lineage in each region. This novel osteochondral graft was shown to have a seamlessly integrated layer structure, high levels of porosity (>97%), a homogeneous pore structure and a high degree of pore interconnectivity. Moreover, homogeneous cellular distribution throughout the entire construct was evident following in vitro culture, demonstrating the potential of this multi-layered scaffold as an advanced strategy for osteochondral defect repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCCMJ完成签到 ,获得积分10
1秒前
Ava应助土豆采纳,获得10
2秒前
3秒前
LL发布了新的文献求助20
4秒前
5秒前
6秒前
请和我吃饭完成签到,获得积分10
7秒前
小蘑菇应助溪夕er采纳,获得10
7秒前
7秒前
大胆的不斜完成签到,获得积分10
9秒前
调研昵称发布了新的文献求助10
9秒前
10秒前
VVValentin发布了新的文献求助30
10秒前
zhlh完成签到,获得积分10
11秒前
11秒前
11秒前
yar应助大胆的不斜采纳,获得10
13秒前
14秒前
科研通AI5应助土豆采纳,获得10
16秒前
16秒前
煮饭吃Zz完成签到 ,获得积分10
18秒前
zho发布了新的文献求助10
20秒前
云烟完成签到,获得积分10
21秒前
传奇3应助二行采纳,获得10
22秒前
科研通AI2S应助二行采纳,获得10
22秒前
小二郎应助二行采纳,获得10
22秒前
CipherSage应助二行采纳,获得10
22秒前
今后应助二行采纳,获得10
22秒前
在水一方应助二行采纳,获得10
22秒前
Eve丶Paopaoxuan应助二行采纳,获得10
22秒前
扶余山本完成签到 ,获得积分10
24秒前
27秒前
害羞的醉卉完成签到 ,获得积分10
28秒前
栗子壳应助熊仔一百采纳,获得50
29秒前
无花果应助沈佳琪采纳,获得10
29秒前
29秒前
完美世界应助djs采纳,获得10
29秒前
30秒前
oydent发布了新的文献求助10
31秒前
悦耳的乐松完成签到,获得积分10
32秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479574
求助须知:如何正确求助?哪些是违规求助? 3070143
关于积分的说明 9116766
捐赠科研通 2761878
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700985
科研通“疑难数据库(出版商)”最低求助积分说明 699985