Reducing the Dimensionality of Data with Neural Networks

自编码 维数之咒 初始化 梯度下降 人工神经网络 计算机科学 主成分分析 人工智能 图层(电子) 模式识别(心理学) 高维 校长(计算机安全) 算法 材料科学 纳米技术 程序设计语言 操作系统
作者
Geoffrey E. Hinton,Ruslan Salakhutdinov
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:313 (5786): 504-507 被引量:20153
标识
DOI:10.1126/science.1127647
摘要

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sxs发布了新的文献求助10
1秒前
慕青应助坚强小虾米采纳,获得10
1秒前
沉默海完成签到,获得积分10
1秒前
Steven完成签到 ,获得积分10
1秒前
科研通AI6应助山雷采纳,获得10
2秒前
桐桐应助小张在努力采纳,获得10
2秒前
酷波er应助sci大户采纳,获得10
3秒前
ding应助DrLee采纳,获得10
3秒前
3秒前
SciGPT应助刘丰铭采纳,获得10
3秒前
qitengzhu发布了新的文献求助10
3秒前
刘霆勋发布了新的文献求助10
3秒前
英姑应助SY采纳,获得10
4秒前
小张同学发布了新的文献求助10
5秒前
6秒前
司藤完成签到 ,获得积分10
6秒前
隐形曼青应助wanduzi采纳,获得10
7秒前
Hello应助一杯甜酒采纳,获得10
7秒前
7秒前
忧伤的觅珍完成签到,获得积分10
9秒前
9秒前
李hy发布了新的文献求助10
10秒前
研友_VZG7GZ应助刘霆勋采纳,获得10
10秒前
科研通AI6应助李俊杰采纳,获得30
11秒前
11秒前
秘密发布了新的文献求助10
11秒前
11秒前
11秒前
情怀应助好名字采纳,获得10
12秒前
12秒前
xiaolv应助能干可乐采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
gngxnh完成签到 ,获得积分10
13秒前
酷酷问薇发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
jm完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809