自编码
维数之咒
初始化
梯度下降
人工神经网络
计算机科学
主成分分析
人工智能
图层(电子)
模式识别(心理学)
高维
校长(计算机安全)
算法
材料科学
纳米技术
程序设计语言
操作系统
作者
Geoffrey E. Hinton,Ruslan Salakhutdinov
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2006-07-27
卷期号:313 (5786): 504-507
被引量:18351
标识
DOI:10.1126/science.1127647
摘要
High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.
科研通智能强力驱动
Strongly Powered by AbleSci AI