量子霍尔效应
波函数
物理
半径
圆柱
量子力学
压缩性
功能(生物学)
配对
振幅
GSM演进的增强数据速率
国家(计算机科学)
指数
分数量子霍尔效应
量子自旋霍尔效应
凝聚态物理
几何学
电子
数学
语言学
哲学
计算机安全
超导电性
进化生物学
生物
计算机科学
热力学
电信
算法
作者
E. H. Rezayi,F. D. M. Haldane
出处
期刊:Physical review
日期:1994-12-15
卷期号:50 (23): 17199-17207
被引量:125
标识
DOI:10.1103/physrevb.50.17199
摘要
We study the Laughlin wave function on the cylinder. We find it only describes an incompressible fluid when the two lengths of the cylinder are comparable. As the radius is made smaller at fixed area, we observe a continuous transition to the charge density wave Tao-Thouless state. We also present some exact properties of the wave function in its polynomial form. We then study the edge excitations of the quantum Hall incompressible fluid modeled by the Laughlin wave function. The exponent describing the fluctuation of the edge predicted by recent theories is shown to be identical with numerical calculations. In particular, for $\nu=1/3$, we obtain the occupation amplitudes of edge state $n(k)$ for 4-10 electron size systems. When plotted as a function of the scaled wave vector they become essentially free of finite-size effects. The resulting curve obtains a very good agreement with the appropriate infinite-size Calogero-Sutherland model occupation numbers. Finally, we numerically obtain $n(k)$ of the edge excitations for some pairing states which may be relevant to the $\nu=5/2$ incompressible Hall state.
科研通智能强力驱动
Strongly Powered by AbleSci AI