计算机科学
校准
贝叶斯概率
胶水
过程(计算)
估计理论
领域(数学)
不确定度分析
数据挖掘
环境科学
敏感性分析
最大似然
不确定度量化
统计
蒙特卡罗方法
计量经济学
水文模型
算法
人工智能
数学
模拟
地质学
材料科学
气候学
纯数学
复合材料
操作系统
作者
Keith Beven,Andrew Binley
标识
DOI:10.1002/hyp.3360060305
摘要
This paper describes a methodology for calibration and uncertainty estimation of distributed models based on generalized likelihood measures. The GLUE procedure works with multiple sets of parameter values and allows that, within the limitations of a given model structure and errors in boundary conditions and field observations, different sets of values may be equally likely as simulators of a catchment. Procedures for incorporating different types of observations into the calibration; Bayesian updating of likelihood values and evaluating the value of additional observations to the calibration process are described. The procedure is computationally intensive but has been implemented on a local parallel processing computer.
科研通智能强力驱动
Strongly Powered by AbleSci AI