体内分布
体内
生物正交化学
化学
代谢物
离体
临床前影像学
正电子发射断层摄影术
放射化学
核医学
体外
生物化学
医学
生物
生物技术
点击化学
组合化学
作者
Leonie Wyffels,David Thomae,Ann-Marie Waldron,Jens Fissers,Stefanie Dedeurwaerdere,Pieter Van der Veken,Jurgen Joossens,Sigrid Stroobants,Koen Augustyns,Steven Staelens
标识
DOI:10.1016/j.nucmedbio.2014.03.023
摘要
The tetrazine-trans-cylooctene cycloaddition using radiolabeled tetrazine or radiolabeled trans-cyclooctene (TCO) has been reported to be a very fast, selective and bioorthogonal reaction that could be useful for in vivo radiolabeling of molecules. We wanted to evaluate the in vivo biodistribution profile and brain uptake of (18)F-labeled TCO ([(18)F]TCO) to assess its potential for pre-targeted imaging in the brain.We evaluated the in vivo behavior of [(18)F]TCO via an ex vivo biodistribution study complemented by in vivo μPET imaging at 5, 30, 60, 90, 120 and 240 min post tracer injection. An in vivo metabolite study was performed at 5 min, 30 min and 120 min post [(18)F]TCO injection by RP-HPLC analysis of plasma and brain extracts. Incubation with human liver microsomes was performed to further evaluate the metabolite profile of the tracer.μPET imaging and ex-vivo biodistribution revealed an high initial brain uptake of [(18)F]TCO (3.8%ID/g at 5 min pi) followed by a washout to 3.0%ID/g at 30 min pi. Subsequently the brain uptake increased again to 3.7%ID/g at 120 min pi followed by a slow washout until 240 min pi (2.9%ID/g). Autoradiography confirmed homogenous brain uptake. On the μPET images bone uptake became gradually visible after 120 min pi and was clearly visible at 240 min pi. The metabolite study revealed a fast metabolization of [(18)F]TCO in plasma and brain into three main polar radiometabolites.Although [(18)F]TCO has previously been described to be a useful tracer for radiolabeling of tetrazine modified targeting molecules, our study indicates that its utility for in vivo chemistry and pre-targeted imaging will be limited. Although [(18)F]TCO clearly enters the brain, it is quickly metabolized with a non-specific accumulation of radioactivity in the brain and bone.
科研通智能强力驱动
Strongly Powered by AbleSci AI