Neural representation of the bottom-up saliency map of natural scenes in human primary visual cortex

视皮层 代表(政治) 自然(考古学) 人工智能 计算机科学 计算机视觉 神经科学 模式识别(心理学) 心理学 地质学 政治学 政治 古生物学 法学
作者
Chen Chen,Xianfeng Zhang,Tianhua Zhou,Yuefeng Wang,Fang Fang
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:13 (9): 233-233 被引量:1
标识
DOI:10.1167/13.9.233
摘要

Zhang and colleagues recently showed that neural activities in V1 could create a bottom-up saliency map (Neuron, 73, 183-192, 2012). In that study, they used simple bar textures and a salient region was created by the orientation contrast between foreground and background bars. Here, we tested if their conclusion can generalize to complex natural scenes. Fifty natural images were selected from the internet based on the output of a prominent saliency model proposed by Itti and Koch (1998). The model predicted that all the natural images had a focal, lateral salient region, which was confirmed by a psychophysical experiment. In the experiment, to avoid top-down influences, each image was presented with a low contrast for only 50 ms and was followed by a high-contrast mask, which rendered the whole image invisible to subjects (confirmed by a forced-choice test). The Posner cueing paradigm was adopted to measure the spatial cueing effect (i.e. saliency) of the predicted salient region on an orientation discrimination task. A positive cueing effect was found and the magnitude of the cueing effect was consistent with the saliency prediction of the model. In a following fMRI experiment, we also used the masked natural scenes and measured BOLD signals responding to the predicted salient region (relative to the background). We found that the BOLD signal in V1, but not in other cortical areas, could well predict the cueing effect. These findings suggest that the bottom-up saliency map of natural scenes could be constructed in V1, providing further compelling evidence for the V1 saliency theory (Li, 2001). Meeting abstract presented at VSS 2013

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zoko发布了新的文献求助10
刚刚
刚刚
曾经的臻发布了新的文献求助10
刚刚
华仔应助S1mple_gentleman采纳,获得10
刚刚
科研通AI5应助CC采纳,获得10
刚刚
刚刚
1秒前
1秒前
张静静完成签到,获得积分10
2秒前
2秒前
震666发布了新的文献求助30
2秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
117发布了新的文献求助10
2秒前
3秒前
3秒前
酶没美镁完成签到,获得积分10
3秒前
小二郎应助Rui采纳,获得10
3秒前
Libra完成签到,获得积分10
4秒前
雪儿发布了新的文献求助30
4秒前
无悔呀发布了新的文献求助10
4秒前
小巧的可仁完成签到 ,获得积分10
4秒前
4秒前
zhao完成签到,获得积分10
5秒前
masu发布了新的文献求助10
5秒前
冷酷尔琴发布了新的文献求助10
6秒前
Ll发布了新的文献求助10
6秒前
优雅山柏完成签到,获得积分10
6秒前
XinyiZhang发布了新的文献求助10
6秒前
小蘑菇应助yangyang采纳,获得10
6秒前
慕青应助欢欢采纳,获得10
7秒前
小憩完成签到,获得积分10
7秒前
南乔发布了新的文献求助10
7秒前
张静静发布了新的文献求助10
8秒前
云儿完成签到,获得积分10
8秒前
淡淡的洋葱完成签到,获得积分10
8秒前
小洲王先生完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740