Near-Term Prediction of Sudden Cardiac Death in Older Hemodialysis Patients Using Electronic Health Records

医学 血液透析 一致性 透析 心源性猝死 急诊医学 风险评估 统计的 死因 电子健康档案 病历 内科学 统计 医疗保健 疾病 计算机科学 经济 经济增长 计算机安全 数学
作者
Benjamin A. Goldstein,Tara I. Chang,Aya Mitani,Themistocles L. Assimes,Wolfgang C. Winkelmayer­
出处
期刊:Clinical Journal of The American Society of Nephrology [American Society of Nephrology]
卷期号:9 (1): 82-91 被引量:31
标识
DOI:10.2215/cjn.03050313
摘要

Sudden cardiac death is the most common cause of death among individuals undergoing hemodialysis. The epidemiology of sudden cardiac death has been well studied, and efforts are shifting to risk assessment. This study aimed to test whether assessment of acute changes during hemodialysis that are captured in electronic health records improved risk assessment.Data were collected from all hemodialysis sessions of patients 66 years and older receiving hemodialysis from a large national dialysis provider between 2004 and 2008. The primary outcome of interest was sudden cardiac death the day of or day after a dialysis session. This study used data from 2004 to 2006 as the training set and data from 2007 to 2008 as the validation set. The machine learning algorithm, Random Forests, was used to derive the prediction model.In 22 million sessions, 898 people between 2004 and 2006 and 826 people between 2007 and 2008 died on the day of or day after a dialysis session that was serving as a training or test data session, respectively. A reasonably strong predictor was derived using just predialysis information (concordance statistic=0.782), which showed modest but significant improvement after inclusion of postdialysis information (concordance statistic=0.799, P<0.001). However, risk prediction decreased the farther out that it was forecasted (up to 1 year), and postdialytic information became less important.Subtle changes in the experience of hemodialysis aid in the assessment of sudden cardiac death and are captured by modern electronic health records. The collected data are better for the assessment of near-term risk as opposed to longer-term risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助傻傻的凌寒采纳,获得10
1秒前
1秒前
RJ应助toxin37采纳,获得10
2秒前
2秒前
2秒前
长孙明雪完成签到,获得积分10
3秒前
优秀的邪欢完成签到 ,获得积分10
3秒前
3秒前
万圣夜完成签到,获得积分10
3秒前
4秒前
我是老大应助LHZM采纳,获得10
5秒前
5秒前
安安完成签到,获得积分10
6秒前
丝绒发布了新的文献求助10
6秒前
7秒前
CipherSage应助A健采纳,获得10
7秒前
8秒前
乐乐应助12采纳,获得10
8秒前
Hiogteng发布了新的文献求助20
9秒前
tzhzh8发布了新的文献求助20
9秒前
xiaotianli发布了新的文献求助10
9秒前
闪闪乞完成签到,获得积分10
10秒前
诺克萨斯完成签到,获得积分10
10秒前
12秒前
电池小白完成签到,获得积分10
12秒前
wenllian完成签到,获得积分10
12秒前
12秒前
BowieHuang应助乘风文月采纳,获得20
13秒前
13秒前
xucc完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
飘逸锦程完成签到 ,获得积分0
14秒前
15秒前
无花果应助SigRosa采纳,获得10
15秒前
lxy完成签到,获得积分10
15秒前
dandelion完成签到,获得积分10
15秒前
脑洞疼应助阿酒采纳,获得10
15秒前
无花果应助勤奋成风采纳,获得10
16秒前
酷波er应助丝绒采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476