Near-Term Prediction of Sudden Cardiac Death in Older Hemodialysis Patients Using Electronic Health Records

医学 血液透析 一致性 透析 心源性猝死 急诊医学 风险评估 统计的 死因 电子健康档案 病历 内科学 统计 医疗保健 疾病 经济 经济增长 计算机科学 计算机安全 数学
作者
Benjamin A. Goldstein,Tara I. Chang,Aya Mitani,Themistocles L. Assimes,Wolfgang C. Winkelmayer­
出处
期刊:Clinical Journal of The American Society of Nephrology [American Society of Nephrology]
卷期号:9 (1): 82-91 被引量:31
标识
DOI:10.2215/cjn.03050313
摘要

Sudden cardiac death is the most common cause of death among individuals undergoing hemodialysis. The epidemiology of sudden cardiac death has been well studied, and efforts are shifting to risk assessment. This study aimed to test whether assessment of acute changes during hemodialysis that are captured in electronic health records improved risk assessment.Data were collected from all hemodialysis sessions of patients 66 years and older receiving hemodialysis from a large national dialysis provider between 2004 and 2008. The primary outcome of interest was sudden cardiac death the day of or day after a dialysis session. This study used data from 2004 to 2006 as the training set and data from 2007 to 2008 as the validation set. The machine learning algorithm, Random Forests, was used to derive the prediction model.In 22 million sessions, 898 people between 2004 and 2006 and 826 people between 2007 and 2008 died on the day of or day after a dialysis session that was serving as a training or test data session, respectively. A reasonably strong predictor was derived using just predialysis information (concordance statistic=0.782), which showed modest but significant improvement after inclusion of postdialysis information (concordance statistic=0.799, P<0.001). However, risk prediction decreased the farther out that it was forecasted (up to 1 year), and postdialytic information became less important.Subtle changes in the experience of hemodialysis aid in the assessment of sudden cardiac death and are captured by modern electronic health records. The collected data are better for the assessment of near-term risk as opposed to longer-term risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小野狼完成签到,获得积分10
刚刚
好的很不错关注了科研通微信公众号
1秒前
lei发布了新的文献求助10
1秒前
deathmask完成签到 ,获得积分10
1秒前
aoww发布了新的文献求助10
2秒前
天Q完成签到,获得积分10
2秒前
3秒前
111发布了新的文献求助10
3秒前
俭朴新瑶完成签到,获得积分10
3秒前
小鱼完成签到,获得积分10
3秒前
4秒前
爱学习的婷完成签到 ,获得积分10
4秒前
sclslc发布了新的文献求助10
4秒前
4秒前
Zhangfu完成签到,获得积分10
6秒前
舒心的完成签到,获得积分10
6秒前
8秒前
账户已注销完成签到,获得积分0
8秒前
9秒前
莫友安完成签到,获得积分10
9秒前
idemipere完成签到,获得积分10
9秒前
WENBO完成签到,获得积分10
9秒前
10秒前
嫩牛五方发布了新的文献求助10
10秒前
KONG完成签到,获得积分10
10秒前
泡沫没有冰完成签到,获得积分10
10秒前
11秒前
11秒前
从心随缘完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
拉拉完成签到,获得积分20
13秒前
害羞的裘完成签到,获得积分10
13秒前
cL发布了新的文献求助10
13秒前
zxy完成签到,获得积分10
14秒前
梦鱼发布了新的文献求助10
15秒前
炼丹炉完成签到,获得积分10
15秒前
胡图图完成签到,获得积分10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244942
求助须知:如何正确求助?哪些是违规求助? 2888587
关于积分的说明 8253996
捐赠科研通 2557043
什么是DOI,文献DOI怎么找? 1385639
科研通“疑难数据库(出版商)”最低求助积分说明 650203
邀请新用户注册赠送积分活动 626369