Finding optimal hyperpaths in large transit networks with realistic headway distributions

车头时距 Erlang(编程语言) 计算机科学 Erlang分布 指数分布 数学优化 概率逻辑 启发式 算法 贪婪算法 数学 模拟 统计 理论计算机科学 函数式程序设计 人工智能
作者
Qianfei Li,Peng Chen,Yu Nie
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:240 (1): 98-108 被引量:33
标识
DOI:10.1016/j.ejor.2014.06.046
摘要

This paper implements and tests a label-setting algorithm for finding optimal hyperpaths in large transit networks with realistic headway distributions. It has been commonly assumed in the literature that headway is exponentially distributed. To validate this assumption, the empirical headway data archived by Chicago Transit Agency are fitted into various probabilistic distributions. The results suggest that the headway data fit much better with Loglogistic, Gamma and Erlang distributions than with the exponential distribution. Accordingly, we propose to model headway using the Erlang distribution in the proposed algorithm, because it best balances realism and tractability. When headway is not exponentially distributed, finding optimal hyperpaths may require enumerating all possible line combinations at each transfer stop, which is tractable only for a small number of alternative lines. To overcome this difficulty, a greedy method is implemented as a heuristic and compared to the brute-force enumeration method. The proposed algorithm is tested on a large scale CTA bus network that has over 10,000 stops. The results show that (1) the assumption of exponentially distributed headway may lead to sub-optimal route choices and (2) the heuristic greedy method provides near optimal solutions in all tested cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今非发布了新的文献求助10
刚刚
李健的小迷弟应助通~采纳,获得30
刚刚
刚刚
刚刚
fanfan44390发布了新的文献求助10
刚刚
Zhang完成签到,获得积分10
1秒前
小二郎应助小田采纳,获得10
2秒前
2秒前
隐形曼青应助liike采纳,获得10
2秒前
phd发布了新的文献求助10
2秒前
2秒前
dingdong发布了新的文献求助30
2秒前
Orange应助清秀的语山采纳,获得50
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
大李包完成签到,获得积分10
3秒前
思源应助费城青年采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
帮助我的人永远不死完成签到,获得积分20
3秒前
无花果应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
LZQ应助科研通管家采纳,获得20
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
1221211应助科研通管家采纳,获得10
4秒前
zzzq应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794