Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures

数量结构-活动关系 化学 有机化学品 激进的 羟基自由基 可预测性 反应速率常数 分子描述符 稳健性(进化) 环境化学 计算化学 生物系统 生化工程 有机化学 数学 动力学 立体化学 统计 生物化学 量子力学 工程类 物理 基因 生物
作者
Chao Li,Xianhai Yang,Xuehua Li,Jingwen Chen,Xianliang Qiao
出处
期刊:Chemosphere [Elsevier]
卷期号:95: 613-618 被引量:49
标识
DOI:10.1016/j.chemosphere.2013.10.020
摘要

The reaction rate constants of hydroxyl radicals with organic chemicals (kOH) are of great importance for assessing the persistence and fate of organic pollutants in the atmosphere. However, experimental determination of kOH seems fairly unrealistic, due to the soaring number of the emerging chemicals additional to the large number of existing chemicals. Quantitative structure–activity relationship (QSAR) models are excellent choices for evaluating and predicting kOH values. In this study, a QSAR model that can predict kOH at different temperatures was developed by employing quantum chemical descriptors and DRAGON descriptors. The adjusted determination coefficient Radj2 of the model is 0.873, and the external validation coefficient Qext2 is 0.835, implying that the model has satisfactory robustness and good predictability. Additionally, a QSAR model was also built for kOH prediction at room-temperature (298 K). The development of the two models followed the guidelines for development and validation of QSAR models proposed by the Organization for Economic Co-operation and Development (OECD). The applicability domains of the current models were extended to several classes of compounds including long-chain alkenes (C8C13), organophosphates, dimethylnaphthalenes, organic selenium and organic mercury compounds that have not been covered in the previous studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方圆完成签到,获得积分10
1秒前
1秒前
玲珑油豆腐完成签到,获得积分10
1秒前
1秒前
2秒前
星辰大海应助秋辞采纳,获得10
2秒前
2秒前
科研通AI5应助OceanBlvdforme采纳,获得10
2秒前
VDC发布了新的文献求助10
2秒前
3秒前
香蕉觅云应助DXXX采纳,获得10
4秒前
4秒前
海鸥海鸥发布了新的文献求助30
4秒前
4秒前
深情安青应助系统提示采纳,获得10
4秒前
传奇3应助阿宝采纳,获得10
5秒前
韭黄发布了新的文献求助10
5秒前
6秒前
桐桐应助玲珑油豆腐采纳,获得10
6秒前
charih完成签到 ,获得积分10
6秒前
hxy808关注了科研通微信公众号
7秒前
佚小满完成签到,获得积分10
7秒前
c123完成签到 ,获得积分10
8秒前
8秒前
berry发布了新的文献求助10
8秒前
超11发布了新的文献求助10
8秒前
9秒前
9秒前
隐形曼青应助烩面大师采纳,获得10
9秒前
9秒前
默然的歌完成签到 ,获得积分10
9秒前
CTL发布了新的文献求助10
10秒前
10秒前
10秒前
大鹏完成签到,获得积分10
10秒前
10秒前
10秒前
congguitar发布了新的文献求助10
11秒前
CodeCraft应助韭黄采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759