离散化
稳健性(进化)
非线性系统
简并能级
守恒定律
指数函数
应用数学
数学
有限元法
扩散
等温过程
数学分析
物理
生物化学
化学
量子力学
基因
热力学
作者
Ansgar Jüngel,Paola Pietra
标识
DOI:10.1142/s0218202597000475
摘要
A discretization scheme based on exponential fitting mixed finite elements is developed for the quasi-hydrodynamic (or nonlinear drift–diffusion) model for semiconductors. The diffusion terms are nonlinear and of degenerate type. The presented two-dimensional scheme maintains the good features already shown by the mixed finite elements methods in the discretization of the standard isothermal drift–diffusion equations (mainly, current conservation and good approximation of sharp shapes). Moreover, it deals with the possible formation of vacuum sets. Several numerical tests show the robustness of the method and illustrate the most important novelties of the model.
科研通智能强力驱动
Strongly Powered by AbleSci AI