材料科学
纳米线
复合数
硫化地杆菌
乙烯醇
导电体
电导率
生物相容性
制作
复合材料
导电聚合物
聚合物
纳米技术
化学工程
化学
细菌
替代医学
物理化学
冶金
病理
工程类
生物
医学
生物膜
遗传学
作者
Yun‐Lu Sun,Hai‐Yan Tang,Alexander E. Ribbe,Volodimyr V. Duzhko,Trevor L. Woodard,Joy E. Ward,Ying Bai,Kelly P. Nevin,Stephen S. Nonnenmann,Thomas P. Russell,Todd Emrick,Derek R. Lovley
出处
期刊:Small
[Wiley]
日期:2018-09-27
卷期号:14 (44)
被引量:47
标识
DOI:10.1002/smll.201802624
摘要
Abstract Protein‐based electronic materials have numerous potential advantages with respect to sustainability and biocompatibility over electronic materials that are synthesized using harsh chemical processes and/or which contain toxic components. The microorganism Geobacter sulfurreducens synthesizes electrically conductive protein nanowires (e‐PNs) with high aspect ratios (3 nm × 10–30 µm) from renewable organic feedstocks. Here, the integration of G. Sulfurreducens e‐PNs into poly(vinyl alcohol) (PVA) as a host polymer matrix is described. The resultant e‐PN/PVA composites exhibit conductivities comparable to PVA‐based composites containing synthetic nanowires. The relationship between e‐PN density and conductivity of the resultant composites is consistent with percolation theory. These e‐PNs confer conductivity to the composites even under extreme conditions, with the highest conductivities achieved from materials prepared at pH 1.5 and temperatures greater than 100 °C. These results demonstrate that e‐PNs represent viable and sustainable nanowire compositions for the fabrication of electrically conductive composite materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI