Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal

计算机科学 模式 任务(项目管理) 面部表情 可穿戴计算机 模态(人机交互) 光学(聚焦) 人工智能 人机交互 个性化 认知 任务分析 机器学习 机器人 心理学 工程类 神经科学 社会科学 系统工程 嵌入式系统 社会学 万维网 物理 光学
作者
Ashwin Ramesh Babu,Akilesh Rajavenkatanarayanan,James Brady,Fillia Makedon
标识
DOI:10.1145/3279810.3279849
摘要

Recent developments in computer vision and the emergence of wearable sensors have opened opportunities for the development of advanced and sophisticated techniques to enable multi-modal user assessment and personalized training which is important in educational, industrial training and rehabilitation applications. They have also paved way for the use of assistive robots to accurately assess human cognitive and physical skills. Assessment and training cannot be generalized as the requirement varies for every person and for every application. The ability of the system to adapt to the individual's needs and performance is essential for its effectiveness. In this paper, the focus is on task performance prediction which is an important parameter to consider for personalization. Several research works focus on how to predict task performance based on physiological and behavioral data. In this work, we follow a multi-modal approach where the system collects information from different modalities to predict performance based on (a) User's emotional state recognized from facial expressions(Behavioral data), (b) User's emotional state from body postures(Behavioral data) (c) task performance from EEG signals (Physiological data) while the person performs a robot-based cognitive task. This multi-modal approach of combining physiological data and behavioral data produces the highest accuracy of 87.5 percent, which outperforms the accuracy of prediction extracted from any single modality. In particular, this approach is useful in finding associations between facial expressions, body postures and brain signals while a person performs a cognitive task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paggyfight完成签到,获得积分10
刚刚
1秒前
颖火虫2588完成签到,获得积分10
2秒前
小困发布了新的文献求助10
2秒前
清嘉完成签到,获得积分10
2秒前
2秒前
SUNstp完成签到,获得积分10
2秒前
甜蜜如娆发布了新的文献求助10
3秒前
mandy完成签到,获得积分10
3秒前
默默纲完成签到,获得积分10
3秒前
yy完成签到,获得积分10
3秒前
3秒前
小肖的KYT完成签到,获得积分10
4秒前
CT完成签到,获得积分10
4秒前
林晗发布了新的文献求助10
4秒前
耳朵暴富富完成签到,获得积分10
4秒前
陈少华发布了新的文献求助10
5秒前
Hello应助陈奥采纳,获得10
5秒前
辞忧完成签到 ,获得积分10
5秒前
谨慎初曼发布了新的文献求助30
5秒前
千暮完成签到,获得积分10
5秒前
5秒前
太阳完成签到,获得积分10
5秒前
6秒前
123654完成签到 ,获得积分10
6秒前
虚幻的涵柏完成签到,获得积分10
6秒前
火星上如松完成签到 ,获得积分10
7秒前
顾羽完成签到,获得积分10
7秒前
7秒前
语雪完成签到,获得积分10
7秒前
何如当初莫相识完成签到,获得积分10
7秒前
blUe完成签到,获得积分10
7秒前
Zzz完成签到,获得积分10
7秒前
现代的紫霜完成签到,获得积分10
8秒前
guoguo完成签到,获得积分10
8秒前
stinkyfish完成签到,获得积分20
8秒前
曾曾完成签到,获得积分10
8秒前
9秒前
9秒前
solitude完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4554543
求助须知:如何正确求助?哪些是违规求助? 3983378
关于积分的说明 12331135
捐赠科研通 3653264
什么是DOI,文献DOI怎么找? 2012425
邀请新用户注册赠送积分活动 1047456
科研通“疑难数据库(出版商)”最低求助积分说明 935928