Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal

计算机科学 模式 任务(项目管理) 面部表情 可穿戴计算机 模态(人机交互) 光学(聚焦) 人工智能 人机交互 个性化 认知 任务分析 机器学习 机器人 心理学 工程类 社会科学 物理 系统工程 光学 神经科学 社会学 万维网 嵌入式系统
作者
Ashwin Ramesh Babu,Akilesh Rajavenkatanarayanan,James Brady,Fillia Makedon
标识
DOI:10.1145/3279810.3279849
摘要

Recent developments in computer vision and the emergence of wearable sensors have opened opportunities for the development of advanced and sophisticated techniques to enable multi-modal user assessment and personalized training which is important in educational, industrial training and rehabilitation applications. They have also paved way for the use of assistive robots to accurately assess human cognitive and physical skills. Assessment and training cannot be generalized as the requirement varies for every person and for every application. The ability of the system to adapt to the individual's needs and performance is essential for its effectiveness. In this paper, the focus is on task performance prediction which is an important parameter to consider for personalization. Several research works focus on how to predict task performance based on physiological and behavioral data. In this work, we follow a multi-modal approach where the system collects information from different modalities to predict performance based on (a) User's emotional state recognized from facial expressions(Behavioral data), (b) User's emotional state from body postures(Behavioral data) (c) task performance from EEG signals (Physiological data) while the person performs a robot-based cognitive task. This multi-modal approach of combining physiological data and behavioral data produces the highest accuracy of 87.5 percent, which outperforms the accuracy of prediction extracted from any single modality. In particular, this approach is useful in finding associations between facial expressions, body postures and brain signals while a person performs a cognitive task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sherry完成签到,获得积分10
刚刚
律齐完成签到,获得积分10
刚刚
云浮山海发布了新的文献求助10
1秒前
3秒前
UP完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
Keqi完成签到,获得积分10
6秒前
6秒前
流年亦梦完成签到 ,获得积分10
6秒前
ww完成签到,获得积分10
7秒前
科研通AI5应助欣喜靖采纳,获得10
7秒前
nanling完成签到 ,获得积分10
7秒前
7秒前
折耳根完成签到 ,获得积分10
8秒前
8秒前
wdzz发布了新的文献求助10
8秒前
yu发布了新的文献求助10
9秒前
戈笙gg发布了新的文献求助10
10秒前
hucchongzi应助skr采纳,获得10
10秒前
青衣北风发布了新的文献求助30
10秒前
Ava应助lalala采纳,获得10
10秒前
11秒前
JaneChen发布了新的文献求助10
12秒前
打打应助小王子采纳,获得10
13秒前
赘婿应助懦弱的手套采纳,获得10
13秒前
ky发布了新的文献求助10
14秒前
14秒前
Shirley完成签到,获得积分10
15秒前
可爱deyi发布了新的文献求助10
15秒前
16秒前
17秒前
19秒前
19秒前
20秒前
Masetti1完成签到 ,获得积分10
20秒前
诚心盼海发布了新的文献求助10
20秒前
20秒前
星辰大海应助苏里SuLi_ALL采纳,获得10
22秒前
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126