Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal

计算机科学 模式 任务(项目管理) 面部表情 可穿戴计算机 模态(人机交互) 光学(聚焦) 人工智能 人机交互 个性化 认知 任务分析 机器学习 机器人 心理学 工程类 神经科学 社会科学 系统工程 嵌入式系统 社会学 万维网 物理 光学
作者
Ashwin Ramesh Babu,Akilesh Rajavenkatanarayanan,James Brady,Fillia Makedon
标识
DOI:10.1145/3279810.3279849
摘要

Recent developments in computer vision and the emergence of wearable sensors have opened opportunities for the development of advanced and sophisticated techniques to enable multi-modal user assessment and personalized training which is important in educational, industrial training and rehabilitation applications. They have also paved way for the use of assistive robots to accurately assess human cognitive and physical skills. Assessment and training cannot be generalized as the requirement varies for every person and for every application. The ability of the system to adapt to the individual's needs and performance is essential for its effectiveness. In this paper, the focus is on task performance prediction which is an important parameter to consider for personalization. Several research works focus on how to predict task performance based on physiological and behavioral data. In this work, we follow a multi-modal approach where the system collects information from different modalities to predict performance based on (a) User's emotional state recognized from facial expressions(Behavioral data), (b) User's emotional state from body postures(Behavioral data) (c) task performance from EEG signals (Physiological data) while the person performs a robot-based cognitive task. This multi-modal approach of combining physiological data and behavioral data produces the highest accuracy of 87.5 percent, which outperforms the accuracy of prediction extracted from any single modality. In particular, this approach is useful in finding associations between facial expressions, body postures and brain signals while a person performs a cognitive task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古雨完成签到,获得积分10
刚刚
2秒前
重要衬衫发布了新的文献求助10
3秒前
Jasper应助明亮的涵山采纳,获得10
3秒前
Lucas应助研友_ngX12Z采纳,获得10
3秒前
4秒前
陆千万完成签到,获得积分10
4秒前
4秒前
七塔蹦完成签到,获得积分10
5秒前
5秒前
宁毅完成签到,获得积分10
5秒前
陈炜smile发布了新的文献求助10
6秒前
大意的如雪完成签到 ,获得积分20
6秒前
迷路雨寒应助123采纳,获得10
6秒前
英俊的铭应助YUJIALING采纳,获得10
7秒前
喜悦又菡发布了新的文献求助10
7秒前
de铭发布了新的文献求助10
7秒前
8秒前
8秒前
爆米花应助温柔的海安采纳,获得10
9秒前
10秒前
10秒前
11秒前
专注的书白完成签到,获得积分10
11秒前
慕容博发布了新的文献求助10
11秒前
桐桐应助ZZ采纳,获得10
12秒前
12秒前
ljt完成签到,获得积分10
13秒前
SDFSGFDR发布了新的文献求助10
13秒前
13秒前
13秒前
悲凉的万仇完成签到,获得积分10
13秒前
搜集达人应助3djacklee采纳,获得10
13秒前
科研通AI6应助Xin采纳,获得10
13秒前
李健应助lx采纳,获得10
14秒前
15秒前
15秒前
16秒前
xiao完成签到 ,获得积分20
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007