X射线光电子能谱
石墨氮化碳
材料科学
光谱学
漫反射红外傅里叶变换
钒酸铋
高分辨率透射电子显微镜
扫描电子显微镜
分析化学(期刊)
选区衍射
傅里叶变换红外光谱
透射电子显微镜
光催化
化学工程
纳米技术
化学
工程类
物理
复合材料
催化作用
量子力学
生物化学
色谱法
作者
C. Murugan,Ramakrishnan Abinav Nataraj,Murugesan Praveen Kumar,S. Ravichandran,Alagarsamy Pandikumar
标识
DOI:10.1002/slct.201900732
摘要
Abstract In the present work, graphitic carbon nitride‐bismuth vanadate (g‐C 3 N 4 ‐BiVO 4 ) nanohybrid materials with different wt. % of g‐C 3 N 4 were successfully synthesized by a simple hydrothermal method and characterized by UV‐Visible diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PLS), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), Fourier‐transform infrared spectroscopy (FT‐IR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray (EDAX) absorption spectroscopy, high‐resolution transmission electron microscopy (HR‐TEM) and selected area electron diffraction (SAED) analysis. The photoelectrocatalytic performance of g‐C 3 N 4 ‐BiVO 4 nanohybrid materials were investigated by water splitting under AM 1.5G (100 mWcm −2 ) illumination. The g‐C 3 N 4 ‐BiVO 4 photoanode with 10 wt. % of g‐C 3 N 4 exhibited higher photoelectrocatalytic activity towards water splitting, which was 1.6 and 2.8‐folds higher than that of the pure BiVO 4 and g‐C 3 N 4 , respectively. The remarkably enhanced photoelectrocatalytic activity of the nanohybrid is due to the efficient photogenerated electron‐hole separation through Z‐scheme mechanism, enhanced interfacial charge transfer process and suppression in the charge recombination rate. Hence, the g‐C 3 N 4 ‐BiVO 4 nanohybrid materials can be potential candidates for light harvesting applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI