代谢组
转录组
代谢物
代谢组学
生物化学
代谢途径
生物
植物生理学
基因表达
基因
植物
生物信息学
作者
Xiaofei Mo,Mengke Zhang,Chaojie Liang,Luyu Cai,Jichun Tian
标识
DOI:10.1016/j.plaphy.2019.04.033
摘要
Phosphorus (P) is a major constituent of biomolecules in plant cells, and is an essential plant macronutrient. Low phosphate (Pi) availability in soils is a major constraint on plant growth. Although a complex variety of plant responses to Pi starvation has been well documented, few studies have integrated both global transcriptome and metabolome analyses to shed light on molecular mechanisms underlying metabolic responses to P deficiency. This study is the first time to investigate global profiles of metabolites and transcripts in soybean (Glycine max) roots subjected to Pi starvation through targeted liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS/MS) and RNA-sequencing analyses. This integrated analysis allows for assessing coordinated transcriptomic and metabolic responses in terms of both pathway enzyme expression and regulatory levels. Between two Pi availability treatments, a total of 155 metabolites differentially accumulated in soybean roots, of which were phosphorylated metabolites, flavonoids and amino acids. Meanwhile, a total of 1644 differentially expressed genes (DEGs) were identified in soybean roots, including 1199 up-regulated and 445 down-regulated genes. Integration of metabolome and transcriptome analyses revealed Pi starvation responsive connection between specific metabolic processes in soybean roots, especially metabolic processes involving phosphorylated metabolites (e.g., phosphorylated lipids and nucleic acids). Taken together, this study suggests that complex molecular responses scavenging internal Pi from phosphorylated metabolites are typical adaptive strategies soybean roots employ as responses to Pi starvation. Identified DEGs will provide potential target region for future efforts to develop P-efficient soybean cultivars.
科研通智能强力驱动
Strongly Powered by AbleSci AI