Noise Robust Multiobjective Evolutionary Clustering Image Segmentation Motivated by the Intuitionistic Fuzzy Information

模糊集 聚类分析 数学 模式识别(心理学) 人工智能 模糊逻辑 图像分割 噪音(视频) 模糊聚类 分割 计算机科学 数学优化 图像(数学)
作者
Feng Zhao,Jiulun Fan,Hanqiang Liu,Rong Lan,Chang Wen Chen
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 387-401 被引量:61
标识
DOI:10.1109/tfuzz.2018.2852289
摘要

Images are always contaminated by noise, increasing uncertainty. Fuzzy set (FS) theory is a useful tool for dealing with uncertainty in images. When comparing with the FS, an intuitionistic fuzzy set (IFS) can better describe the blurred characteristic in images due to the membership, nonmembership, and hesitation degrees. However, when applied to an image segmentation, the IFS cannot completely overcome the influence of noise. With the aim of performing noisy image segmentation under several criteria, this paper defines a noise robust IFS (NR-IFS) for an image and then presents a novel noise robust multiobjective evolutionary intuitionistic fuzzy clustering algorithm (NR-MOEIFC). A majority dominated suppressed similarity measure using the neighborhood statistics and the competitive learning is proposed to obtain the NR-IFS representation for the image corrupted by noise. Then, the NR-IFS is fully used to motivate the whole process of multiobjective evolutionary clustering: first, computing a three-parameter intuitionistic fuzzy distance measure; second, constructing intuitionistic fuzzy fitness functions; third, designing a nonuniform intuitionistic fuzzy mutation operator; and forth, defining an intuitionistic fuzzy cluster validity index to select the optimal solution from the final nondominated solution set. The histogram statistics of NR-IFS are adopted in the NR-MOEIFC to greatly reduce the computational complexity. Experimental results on Berkeley and real magnetic resonance images reveal that the NR-MOEIFC behaves well in noise robustness and segmentation performance while requiring a low time cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智芝发布了新的文献求助10
2秒前
Liu发布了新的文献求助10
3秒前
深情安青应助蓝天采纳,获得10
4秒前
大模型应助彪壮的吐司采纳,获得10
4秒前
6秒前
vousme完成签到 ,获得积分10
7秒前
7秒前
张帆发布了新的文献求助10
8秒前
等乙天发布了新的文献求助10
11秒前
F-超哥完成签到,获得积分10
12秒前
12秒前
我是老大应助lili采纳,获得10
15秒前
linhappy完成签到 ,获得积分10
15秒前
15秒前
骨科小李完成签到,获得积分10
15秒前
painting应助柚子苏采纳,获得10
15秒前
琪琪完成签到,获得积分10
16秒前
外向的易蓉完成签到 ,获得积分10
16秒前
科研通AI6应助蜗牛采纳,获得10
16秒前
19秒前
憯懔完成签到,获得积分10
19秒前
AspenW完成签到,获得积分10
20秒前
20秒前
xchi发布了新的文献求助10
23秒前
23秒前
24秒前
orixero应助可爱的胖嘟嘟采纳,获得10
24秒前
慕青应助闭眼听风雨采纳,获得10
24秒前
啵啵鱼发布了新的文献求助10
25秒前
25秒前
25秒前
蓝天发布了新的文献求助10
26秒前
zhonglv7应助科研通管家采纳,获得10
29秒前
littleknees应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
niNe3YUE应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563431
求助须知:如何正确求助?哪些是违规求助? 4648294
关于积分的说明 14684348
捐赠科研通 4590281
什么是DOI,文献DOI怎么找? 2518423
邀请新用户注册赠送积分活动 1491102
关于科研通互助平台的介绍 1462386