Band-Wise Nonlinear Unmixing for Hyperspectral Imagery Using an Extended Multilinear Mixing Model

多线性映射 高光谱成像 非线性系统 混合(物理) 计算机科学 正规化(语言学) 最大值和最小值 算法 标量(数学) 像素 数学优化 数学 人工智能 物理 数学分析 量子力学 纯数学 几何学
作者
Bin Yang,Bin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (11): 6747-6762 被引量:36
标识
DOI:10.1109/tgrs.2018.2842707
摘要

Most nonlinear mixture models and unmixing methods in the literature assume implicitly that the degrees of multiple scatterings at each band are the same. However, it is commonly against the practical situation that spectral mixing is intrinsically wavelength dependent, and the nonlinear intensity varies along with bands. In this paper, a band-wise nonlinear unmixing algorithm is proposed to circumvent this drawback. Pixel dependent probability parameters of the recent multilinear mixing model that represent different orders of nonlinear contributions are vectorized. Therefore, each band can get a scalar probability parameter which explicitly corresponds to the nonlinear intensity at that band. Before solving the extended model, abundances' sparsity and probability parameters' smoothness are exploited to build two physical constraints. After incorporating them into the objective function as regularization terms, the issue of local minima can be well alleviated to produce better solutions. Finally, alternating direction method of multipliers is applied to solve the constrained optimization problem and implement the nonlinear spectral unmixing. Experiments are further carried out with current model-based simulated data, physical-based synthetic data of virtual vegetated areas, and real hyperspectral remote sensing images, to provide a more reasonable validation for the developed model and algorithm. In comparison with state-of-the-art nonlinear unmixing methods, this method performs better in explaining the band dependent nonlinear mixing effect for improving the unmixing accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助lq采纳,获得10
刚刚
fxxya发布了新的文献求助10
刚刚
星落清尘发布了新的文献求助10
1秒前
贺可乐发布了新的文献求助10
1秒前
2秒前
今后应助枯藤老柳树采纳,获得10
3秒前
十七应助肥肥吃果果采纳,获得10
3秒前
Ca发布了新的文献求助10
6秒前
7秒前
gezid完成签到 ,获得积分10
7秒前
sansan完成签到,获得积分10
7秒前
wanci应助星落清尘采纳,获得10
8秒前
水博士发布了新的文献求助10
8秒前
9秒前
传奇3应助年轻就要气盛采纳,获得10
10秒前
李爱国应助ycxlb采纳,获得10
10秒前
11秒前
贺可乐完成签到,获得积分10
11秒前
清爽的曼凝完成签到,获得积分10
12秒前
Snake发布了新的文献求助10
13秒前
大模型应助我来啦采纳,获得10
13秒前
72发布了新的文献求助20
14秒前
ningwu完成签到,获得积分10
15秒前
16秒前
周乘风发布了新的文献求助10
18秒前
科目三应助sanbai-li采纳,获得10
18秒前
ycxlb完成签到,获得积分10
20秒前
20秒前
CipherSage应助大气小天鹅采纳,获得10
21秒前
22秒前
24秒前
24秒前
24秒前
十七应助xxx采纳,获得10
25秒前
Lucas应助Dr.Liujun采纳,获得10
26秒前
小璐sunny发布了新的文献求助10
27秒前
28秒前
可乐完成签到,获得积分10
28秒前
无私小小完成签到,获得积分10
29秒前
xxy发布了新的文献求助10
29秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387900
求助须知:如何正确求助?哪些是违规求助? 3000440
关于积分的说明 8791481
捐赠科研通 2686501
什么是DOI,文献DOI怎么找? 1471660
科研通“疑难数据库(出版商)”最低求助积分说明 680424
邀请新用户注册赠送积分活动 673174