A key-point based real-time tracking of lung tumor in x-ray image sequence by using difference of Gaussians filtering and optical flow

离群值 计算机科学 人工智能 计算机视觉 光流 钥匙(锁) 帧(网络) 噪音(视频) 跟踪(教育) 图像(数学) 心理学 教育学 计算机安全 电信
作者
Kei Ichiji,Yusuke Yoshida,Noriyasu Homma,Xiaoyong Zhang,Ivo Bukovský,Yoshihiro Takai,Makoto Yoshizawa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185007-185007 被引量:6
标识
DOI:10.1088/1361-6560/aada71
摘要

In radiation therapy, for accurate radiation dose delivery to a target tumor and reduction of the extra exposure of normal tissues, real-time tumor tracking is typically an important technique in lung cancer treatment since lung tumors move with patients' respiration. To observe a tumor motion in real time, x-ray fluoroscopic devices can be employed, and various tracking techniques have been proposed to track tumors. However, development of a fast and accurate tracking method for clinical use is still a challenging task since the obscured image of the tumor can cause decreased tracking accuracy and can result in additional processing time for remedying the accuracy. In this study, a new key-point-based tumor tracking method, which is sufficiently fast and accurate, is presented. Given an x-ray image sequence, the proposed method employs a difference-of-Gaussians filtering technique to detect key points in the tumor region of the first frame which are robust against noise and outliers in the subsequent frames. In the subsequent frames, these key points are tracked using a fast optical flow technique, and tumor motion is estimated via their movement. To evaluate the performance, the proposed method has been tested on several clinical kV and MV x-ray image sequences. The experimental results showed that the average of the root mean square errors of tracking were [Formula: see text] and [Formula: see text] for kV and MV x-ray image sequences, respectively. This tracking performance was more accurate than previous tracking methods. In addition, the average processing times for each frame were [Formula: see text] and [Formula: see text] for kV and MV image sequences, respectively, and the proposed method was faster than previous methods as well as shorter than frame acquisition interval. Therefore, the proposed method has the potential for both highly accurate and fast tumor tracking in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XieQinxie完成签到,获得积分10
1秒前
yang发布了新的文献求助10
1秒前
Stroeve发布了新的文献求助10
2秒前
xiyuexue完成签到,获得积分10
3秒前
3秒前
3秒前
小猫宝完成签到,获得积分10
5秒前
5秒前
Ssyong完成签到 ,获得积分10
7秒前
zyyyyyy发布了新的文献求助10
8秒前
许初完成签到,获得积分20
8秒前
pxy发布了新的文献求助10
8秒前
爆米花应助biubiu采纳,获得10
8秒前
luo发布了新的文献求助10
9秒前
CodeCraft应助Cccrik采纳,获得10
9秒前
摩天大楼完成签到,获得积分10
9秒前
阿苏完成签到,获得积分10
10秒前
可爱的函函应助yang采纳,获得10
10秒前
今后应助黄宇阳采纳,获得10
14秒前
14秒前
pxy完成签到,获得积分10
15秒前
神鸢发布了新的文献求助30
17秒前
18秒前
zhikaiyici完成签到,获得积分10
19秒前
Hello应助pingli19861002采纳,获得10
20秒前
Hello应助翟佳宁采纳,获得10
20秒前
三岁居居完成签到,获得积分20
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
luo完成签到,获得积分10
23秒前
赵伟旭完成签到,获得积分10
24秒前
冷静的方盒完成签到,获得积分10
26秒前
川农辅导员完成签到,获得积分10
26秒前
Jessie发布了新的文献求助10
27秒前
墨之默发布了新的文献求助30
28秒前
文青发布了新的文献求助10
28秒前
Shuaishuai123完成签到,获得积分20
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719