A key-point based real-time tracking of lung tumor in x-ray image sequence by using difference of Gaussians filtering and optical flow

离群值 计算机科学 人工智能 计算机视觉 光流 钥匙(锁) 帧(网络) 噪音(视频) 跟踪(教育) 图像(数学) 心理学 教育学 计算机安全 电信
作者
Kei Ichiji,Yusuke Yoshida,Noriyasu Homma,Xiaoyong Zhang,Ivo Bukovský,Yoshihiro Takai,Makoto Yoshizawa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185007-185007 被引量:6
标识
DOI:10.1088/1361-6560/aada71
摘要

In radiation therapy, for accurate radiation dose delivery to a target tumor and reduction of the extra exposure of normal tissues, real-time tumor tracking is typically an important technique in lung cancer treatment since lung tumors move with patients' respiration. To observe a tumor motion in real time, x-ray fluoroscopic devices can be employed, and various tracking techniques have been proposed to track tumors. However, development of a fast and accurate tracking method for clinical use is still a challenging task since the obscured image of the tumor can cause decreased tracking accuracy and can result in additional processing time for remedying the accuracy. In this study, a new key-point-based tumor tracking method, which is sufficiently fast and accurate, is presented. Given an x-ray image sequence, the proposed method employs a difference-of-Gaussians filtering technique to detect key points in the tumor region of the first frame which are robust against noise and outliers in the subsequent frames. In the subsequent frames, these key points are tracked using a fast optical flow technique, and tumor motion is estimated via their movement. To evaluate the performance, the proposed method has been tested on several clinical kV and MV x-ray image sequences. The experimental results showed that the average of the root mean square errors of tracking were [Formula: see text] and [Formula: see text] for kV and MV x-ray image sequences, respectively. This tracking performance was more accurate than previous tracking methods. In addition, the average processing times for each frame were [Formula: see text] and [Formula: see text] for kV and MV image sequences, respectively, and the proposed method was faster than previous methods as well as shorter than frame acquisition interval. Therefore, the proposed method has the potential for both highly accurate and fast tumor tracking in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhn完成签到 ,获得积分10
1秒前
灰灰完成签到,获得积分10
2秒前
丽莉发布了新的文献求助10
4秒前
大个应助亚铁氰化钾采纳,获得10
4秒前
Wayne完成签到 ,获得积分10
6秒前
rkay完成签到,获得积分10
7秒前
嘻嘻哈哈完成签到 ,获得积分10
8秒前
灰鸽舞完成签到 ,获得积分10
11秒前
赖建琛完成签到 ,获得积分10
13秒前
水草帽完成签到 ,获得积分10
14秒前
ken131完成签到 ,获得积分0
19秒前
CipherSage应助淡然幻梦采纳,获得10
19秒前
Ava应助ewovk采纳,获得10
20秒前
水草帽完成签到 ,获得积分10
23秒前
Stone完成签到,获得积分10
23秒前
SimonShaw完成签到,获得积分10
26秒前
haochi完成签到,获得积分10
31秒前
keleboys完成签到 ,获得积分10
38秒前
刘雨森完成签到 ,获得积分10
39秒前
彩色映雁完成签到 ,获得积分10
40秒前
汪汪淬冰冰完成签到,获得积分10
40秒前
cq_2完成签到,获得积分0
40秒前
Macro完成签到 ,获得积分10
42秒前
喵喵完成签到 ,获得积分10
44秒前
Owen应助科研通管家采纳,获得10
44秒前
单小芫完成签到 ,获得积分10
45秒前
小禾一定行完成签到 ,获得积分10
46秒前
w0r1d完成签到 ,获得积分10
53秒前
知秋完成签到 ,获得积分10
55秒前
方圆完成签到 ,获得积分10
1分钟前
153266916完成签到 ,获得积分10
1分钟前
风中的向卉完成签到 ,获得积分10
1分钟前
冷傲菠萝完成签到 ,获得积分10
1分钟前
mike2012完成签到 ,获得积分10
1分钟前
天将明完成签到 ,获得积分0
1分钟前
chaosyw完成签到,获得积分10
1分钟前
啦啦啦啦完成签到 ,获得积分10
1分钟前
popo6150完成签到 ,获得积分10
1分钟前
friend516完成签到 ,获得积分10
1分钟前
aaronroseman完成签到,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5117808
求助须知:如何正确求助?哪些是违规求助? 4323935
关于积分的说明 13470888
捐赠科研通 4156676
什么是DOI,文献DOI怎么找? 2278049
邀请新用户注册赠送积分活动 1279883
关于科研通互助平台的介绍 1218362