A key-point based real-time tracking of lung tumor in x-ray image sequence by using difference of Gaussians filtering and optical flow

离群值 计算机科学 人工智能 计算机视觉 光流 钥匙(锁) 帧(网络) 噪音(视频) 跟踪(教育) 图像(数学) 心理学 教育学 计算机安全 电信
作者
Kei Ichiji,Yusuke Yoshida,Noriyasu Homma,Xiaoyong Zhang,Ivo Bukovský,Yoshihiro Takai,Makoto Yoshizawa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185007-185007 被引量:6
标识
DOI:10.1088/1361-6560/aada71
摘要

In radiation therapy, for accurate radiation dose delivery to a target tumor and reduction of the extra exposure of normal tissues, real-time tumor tracking is typically an important technique in lung cancer treatment since lung tumors move with patients' respiration. To observe a tumor motion in real time, x-ray fluoroscopic devices can be employed, and various tracking techniques have been proposed to track tumors. However, development of a fast and accurate tracking method for clinical use is still a challenging task since the obscured image of the tumor can cause decreased tracking accuracy and can result in additional processing time for remedying the accuracy. In this study, a new key-point-based tumor tracking method, which is sufficiently fast and accurate, is presented. Given an x-ray image sequence, the proposed method employs a difference-of-Gaussians filtering technique to detect key points in the tumor region of the first frame which are robust against noise and outliers in the subsequent frames. In the subsequent frames, these key points are tracked using a fast optical flow technique, and tumor motion is estimated via their movement. To evaluate the performance, the proposed method has been tested on several clinical kV and MV x-ray image sequences. The experimental results showed that the average of the root mean square errors of tracking were [Formula: see text] and [Formula: see text] for kV and MV x-ray image sequences, respectively. This tracking performance was more accurate than previous tracking methods. In addition, the average processing times for each frame were [Formula: see text] and [Formula: see text] for kV and MV image sequences, respectively, and the proposed method was faster than previous methods as well as shorter than frame acquisition interval. Therefore, the proposed method has the potential for both highly accurate and fast tumor tracking in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助漂亮的鸡采纳,获得10
7秒前
8秒前
无花果应助研究啥采纳,获得10
11秒前
Ava应助顺利兰采纳,获得10
11秒前
12秒前
潘子完成签到,获得积分10
13秒前
咚咚发布了新的文献求助10
16秒前
Lee完成签到,获得积分10
16秒前
guoguo完成签到 ,获得积分10
16秒前
17秒前
18秒前
amber发布了新的文献求助30
18秒前
18秒前
19秒前
春宇发布了新的文献求助30
20秒前
漂亮的鸡发布了新的文献求助10
21秒前
木子李发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
顺利兰发布了新的文献求助10
24秒前
小丽酱发布了新的文献求助10
25秒前
spin发布了新的文献求助10
26秒前
28秒前
30秒前
简单枫完成签到,获得积分10
30秒前
Tiw应助现代的竺采纳,获得10
31秒前
Sally发布了新的文献求助10
32秒前
上官若男应助Jim luo采纳,获得10
34秒前
鱼了个鱼发布了新的文献求助10
34秒前
清脆涔完成签到,获得积分10
35秒前
小丽酱完成签到,获得积分10
35秒前
Yaon-Xu完成签到 ,获得积分10
36秒前
思源应助wph采纳,获得30
36秒前
小黑发布了新的文献求助10
38秒前
NexusExplorer应助高大的易蓉采纳,获得10
39秒前
41秒前
spin完成签到,获得积分10
42秒前
爆米花应助朴英俊采纳,获得30
45秒前
深情安青应助seven_yao采纳,获得10
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353002
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682092
捐赠科研通 2658911
什么是DOI,文献DOI怎么找? 1456009
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884