已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Anomaly Detection on Attributed Networks

自编码 计算机科学 异常检测 深度学习 人工智能 节点(物理) 子空间拓扑 数据挖掘 机器学习 工程类 结构工程
作者
Kaize Ding,Jundong Li,Rohit Bhanushali,Liu Huan
出处
期刊:Society for Industrial and Applied Mathematics eBooks [Society for Industrial and Applied Mathematics]
卷期号:: 594-602 被引量:214
标识
DOI:10.1137/1.9781611975673.67
摘要

Attributed networks are ubiquitous and form a critical component of modern information infrastructure, where additional node attributes complement the raw network structure in knowledge discovery. Recently, detecting anomalous nodes on attributed networks has attracted an increasing amount of research attention, with broad applications in various high-impact domains, such as cybersecurity, finance, and healthcare. Most of the existing attempts, however, tackle the problem with shallow learning mechanisms by ego-network or community analysis, or through subspace selection. Undoubtedly, these models cannot fully address the computational challenges on attributed networks. For example, they often suffer from the network sparsity and data nonlinearity issues, and fail to capture the complex interactions between different information modalities, thus negatively impact the performance of anomaly detection. To tackle the aforementioned problems, in this paper, we study the anomaly detection problem on attributed networks by developing a novel deep model. In particular, our proposed deep model: (1) explicitly models the topological structure and nodal attributes seamlessly for node embedding learning with the prevalent graph convolutional network (GCN); and (2) is customized to address the anomaly detection problem by virtue of deep autoencoder that leverages the learned embeddings to reconstruct the original data. The synergy between GCN and autoencoder enables us to spot anomalies by measuring the reconstruction errors of nodes from both the structure and the attribute perspectives. Extensive experiments on real-world attributed network datasets demonstrate the efficacy of our proposed algorithm.MSC codesKeywords:Anomaly DetectionAttributed NetworksGraph Convolutional NetworkDeep Autoencoder
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
AbleSpen发布了新的文献求助10
3秒前
zzz完成签到,获得积分10
4秒前
8秒前
Emma完成签到 ,获得积分10
8秒前
9秒前
浮浮世世发布了新的文献求助10
12秒前
LongH2完成签到,获得积分10
13秒前
明亮的小懒虫完成签到 ,获得积分10
13秒前
顾良发布了新的文献求助10
14秒前
16秒前
16秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
dynamoo应助科研通管家采纳,获得30
20秒前
浮游应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得20
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
勇胜应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
dynamoo应助科研通管家采纳,获得10
21秒前
dynamoo应助科研通管家采纳,获得10
21秒前
dynamoo应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
21秒前
24秒前
25秒前
细心的小鸽子完成签到,获得积分10
26秒前
鹤昀发布了新的文献求助10
27秒前
小宋爱科研完成签到 ,获得积分10
27秒前
kevin完成签到 ,获得积分10
27秒前
所所应助ybheart采纳,获得10
30秒前
31秒前
31秒前
领导范儿应助bzy采纳,获得10
32秒前
俏皮的天思完成签到,获得积分10
32秒前
酷酷的匪发布了新的文献求助10
34秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426055
求助须知:如何正确求助?哪些是违规求助? 4539788
关于积分的说明 14170577
捐赠科研通 4457597
什么是DOI,文献DOI怎么找? 2444610
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1413014