Deep Anomaly Detection on Attributed Networks

自编码 计算机科学 异常检测 深度学习 人工智能 节点(物理) 子空间拓扑 数据挖掘 机器学习 工程类 结构工程
作者
Kaize Ding,Jundong Li,Rohit Bhanushali,Liu Huan
出处
期刊:Society for Industrial and Applied Mathematics eBooks [Society for Industrial and Applied Mathematics]
卷期号:: 594-602 被引量:214
标识
DOI:10.1137/1.9781611975673.67
摘要

Attributed networks are ubiquitous and form a critical component of modern information infrastructure, where additional node attributes complement the raw network structure in knowledge discovery. Recently, detecting anomalous nodes on attributed networks has attracted an increasing amount of research attention, with broad applications in various high-impact domains, such as cybersecurity, finance, and healthcare. Most of the existing attempts, however, tackle the problem with shallow learning mechanisms by ego-network or community analysis, or through subspace selection. Undoubtedly, these models cannot fully address the computational challenges on attributed networks. For example, they often suffer from the network sparsity and data nonlinearity issues, and fail to capture the complex interactions between different information modalities, thus negatively impact the performance of anomaly detection. To tackle the aforementioned problems, in this paper, we study the anomaly detection problem on attributed networks by developing a novel deep model. In particular, our proposed deep model: (1) explicitly models the topological structure and nodal attributes seamlessly for node embedding learning with the prevalent graph convolutional network (GCN); and (2) is customized to address the anomaly detection problem by virtue of deep autoencoder that leverages the learned embeddings to reconstruct the original data. The synergy between GCN and autoencoder enables us to spot anomalies by measuring the reconstruction errors of nodes from both the structure and the attribute perspectives. Extensive experiments on real-world attributed network datasets demonstrate the efficacy of our proposed algorithm.MSC codesKeywords:Anomaly DetectionAttributed NetworksGraph Convolutional NetworkDeep Autoencoder
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
薇薇发布了新的文献求助10
刚刚
1秒前
今后应助桀桀桀采纳,获得10
1秒前
zwc发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
XYN1发布了新的文献求助10
1秒前
2秒前
siyan156发布了新的文献求助10
3秒前
橙果果发布了新的文献求助20
5秒前
zwc完成签到,获得积分10
6秒前
单薄的夜南应助blue采纳,获得240
6秒前
7秒前
9秒前
薇薇完成签到,获得积分10
10秒前
情怀应助moon采纳,获得10
12秒前
12秒前
13秒前
llnysl完成签到 ,获得积分10
13秒前
特梅头发布了新的文献求助20
16秒前
17秒前
plu发布了新的文献求助30
17秒前
无限的书芹完成签到 ,获得积分10
17秒前
20秒前
共享精神应助conanyangqun采纳,获得10
21秒前
cy应助weilanhaian采纳,获得10
21秒前
SciGPT应助Stroeve采纳,获得10
22秒前
lipel完成签到,获得积分10
24秒前
小马甲应助润泽采纳,获得10
24秒前
高贵黄豆发布了新的文献求助10
24秒前
25秒前
vivian完成签到,获得积分10
25秒前
han发布了新的文献求助10
27秒前
28秒前
Mandy完成签到,获得积分10
29秒前
hyue发布了新的文献求助10
30秒前
123完成签到,获得积分10
30秒前
32秒前
Stroeve发布了新的文献求助10
33秒前
SciGPT应助写得出发的中采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052