Deep Anomaly Detection on Attributed Networks

自编码 计算机科学 异常检测 深度学习 人工智能 节点(物理) 子空间拓扑 数据挖掘 机器学习 工程类 结构工程
作者
Kaize Ding,Jundong Li,Rohit Bhanushali,Liu Huan
出处
期刊:Society for Industrial and Applied Mathematics eBooks [Society for Industrial and Applied Mathematics]
卷期号:: 594-602 被引量:214
标识
DOI:10.1137/1.9781611975673.67
摘要

Attributed networks are ubiquitous and form a critical component of modern information infrastructure, where additional node attributes complement the raw network structure in knowledge discovery. Recently, detecting anomalous nodes on attributed networks has attracted an increasing amount of research attention, with broad applications in various high-impact domains, such as cybersecurity, finance, and healthcare. Most of the existing attempts, however, tackle the problem with shallow learning mechanisms by ego-network or community analysis, or through subspace selection. Undoubtedly, these models cannot fully address the computational challenges on attributed networks. For example, they often suffer from the network sparsity and data nonlinearity issues, and fail to capture the complex interactions between different information modalities, thus negatively impact the performance of anomaly detection. To tackle the aforementioned problems, in this paper, we study the anomaly detection problem on attributed networks by developing a novel deep model. In particular, our proposed deep model: (1) explicitly models the topological structure and nodal attributes seamlessly for node embedding learning with the prevalent graph convolutional network (GCN); and (2) is customized to address the anomaly detection problem by virtue of deep autoencoder that leverages the learned embeddings to reconstruct the original data. The synergy between GCN and autoencoder enables us to spot anomalies by measuring the reconstruction errors of nodes from both the structure and the attribute perspectives. Extensive experiments on real-world attributed network datasets demonstrate the efficacy of our proposed algorithm.MSC codesKeywords:Anomaly DetectionAttributed NetworksGraph Convolutional NetworkDeep Autoencoder
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮雨兰发布了新的文献求助10
1秒前
1秒前
萧一发布了新的文献求助10
2秒前
3秒前
3秒前
成就梦松发布了新的文献求助10
4秒前
Queen完成签到,获得积分10
4秒前
5秒前
5秒前
善良清炎发布了新的文献求助10
6秒前
新宇星辰发布了新的文献求助10
8秒前
幸福台灯发布了新的文献求助10
11秒前
11秒前
electricelectric应助风语村采纳,获得30
12秒前
12秒前
姽婳wy发布了新的文献求助20
13秒前
英俊的铭应助Sun采纳,获得10
14秒前
崔文浩发布了新的文献求助10
15秒前
落苏潮海发布了新的文献求助30
15秒前
小迷糊发布了新的文献求助10
15秒前
热沙来提完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
wanci应助HJJHJH采纳,获得10
19秒前
wxy发布了新的文献求助10
22秒前
22秒前
上官若男应助清脆的夜白采纳,获得10
24秒前
24秒前
香仔啊发布了新的文献求助10
24秒前
大个应助新宇星辰采纳,获得10
25秒前
科研通AI6应助悠夏sunny采纳,获得10
25秒前
nie完成签到,获得积分20
25秒前
失眠听南完成签到,获得积分10
25秒前
李会计和完成签到,获得积分10
26秒前
26秒前
寒冷南晴完成签到,获得积分10
27秒前
27秒前
ding应助结实半邪采纳,获得30
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355483
求助须知:如何正确求助?哪些是违规求助? 4487366
关于积分的说明 13969755
捐赠科研通 4387995
什么是DOI,文献DOI怎么找? 2410805
邀请新用户注册赠送积分活动 1403340
关于科研通互助平台的介绍 1376902