Deep Anomaly Detection on Attributed Networks

自编码 计算机科学 异常检测 深度学习 人工智能 节点(物理) 子空间拓扑 数据挖掘 机器学习 工程类 结构工程
作者
Kaize Ding,Jundong Li,Rohit Bhanushali,Liu Huan
出处
期刊:Society for Industrial and Applied Mathematics eBooks [Society for Industrial and Applied Mathematics]
卷期号:: 594-602 被引量:214
标识
DOI:10.1137/1.9781611975673.67
摘要

Attributed networks are ubiquitous and form a critical component of modern information infrastructure, where additional node attributes complement the raw network structure in knowledge discovery. Recently, detecting anomalous nodes on attributed networks has attracted an increasing amount of research attention, with broad applications in various high-impact domains, such as cybersecurity, finance, and healthcare. Most of the existing attempts, however, tackle the problem with shallow learning mechanisms by ego-network or community analysis, or through subspace selection. Undoubtedly, these models cannot fully address the computational challenges on attributed networks. For example, they often suffer from the network sparsity and data nonlinearity issues, and fail to capture the complex interactions between different information modalities, thus negatively impact the performance of anomaly detection. To tackle the aforementioned problems, in this paper, we study the anomaly detection problem on attributed networks by developing a novel deep model. In particular, our proposed deep model: (1) explicitly models the topological structure and nodal attributes seamlessly for node embedding learning with the prevalent graph convolutional network (GCN); and (2) is customized to address the anomaly detection problem by virtue of deep autoencoder that leverages the learned embeddings to reconstruct the original data. The synergy between GCN and autoencoder enables us to spot anomalies by measuring the reconstruction errors of nodes from both the structure and the attribute perspectives. Extensive experiments on real-world attributed network datasets demonstrate the efficacy of our proposed algorithm.MSC codesKeywords:Anomaly DetectionAttributed NetworksGraph Convolutional NetworkDeep Autoencoder
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助hui_L采纳,获得10
1秒前
爱静静应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
RW应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
爱静静应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
威武的幻波完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
爱静静应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
彦佳雪发布了新的文献求助10
3秒前
CipherSage应助医学僧采纳,获得10
3秒前
哭泣的丝发布了新的文献求助10
4秒前
马浩博发布了新的文献求助10
5秒前
6秒前
段月漪发布了新的文献求助10
6秒前
快乐小蜜蜂应助XYN1采纳,获得10
8秒前
思源应助儒雅的斑马采纳,获得10
8秒前
8秒前
9秒前
9秒前
领导范儿应助陶醉的大炮采纳,获得30
10秒前
10秒前
大模型应助失眠的血茗采纳,获得10
11秒前
11秒前
liumx发布了新的文献求助10
11秒前
12秒前
王小思发布了新的文献求助10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260841
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318187
捐赠科研通 2571677
什么是DOI,文献DOI怎么找? 1397150
科研通“疑难数据库(出版商)”最低求助积分说明 653663
邀请新用户注册赠送积分活动 632213