Deep Anomaly Detection on Attributed Networks

自编码 计算机科学 异常检测 深度学习 人工智能 节点(物理) 子空间拓扑 数据挖掘 机器学习 工程类 结构工程
作者
Kaize Ding,Jundong Li,Rohit Bhanushali,Liu Huan
出处
期刊:Society for Industrial and Applied Mathematics eBooks [Society for Industrial and Applied Mathematics]
卷期号:: 594-602 被引量:214
标识
DOI:10.1137/1.9781611975673.67
摘要

Attributed networks are ubiquitous and form a critical component of modern information infrastructure, where additional node attributes complement the raw network structure in knowledge discovery. Recently, detecting anomalous nodes on attributed networks has attracted an increasing amount of research attention, with broad applications in various high-impact domains, such as cybersecurity, finance, and healthcare. Most of the existing attempts, however, tackle the problem with shallow learning mechanisms by ego-network or community analysis, or through subspace selection. Undoubtedly, these models cannot fully address the computational challenges on attributed networks. For example, they often suffer from the network sparsity and data nonlinearity issues, and fail to capture the complex interactions between different information modalities, thus negatively impact the performance of anomaly detection. To tackle the aforementioned problems, in this paper, we study the anomaly detection problem on attributed networks by developing a novel deep model. In particular, our proposed deep model: (1) explicitly models the topological structure and nodal attributes seamlessly for node embedding learning with the prevalent graph convolutional network (GCN); and (2) is customized to address the anomaly detection problem by virtue of deep autoencoder that leverages the learned embeddings to reconstruct the original data. The synergy between GCN and autoencoder enables us to spot anomalies by measuring the reconstruction errors of nodes from both the structure and the attribute perspectives. Extensive experiments on real-world attributed network datasets demonstrate the efficacy of our proposed algorithm.MSC codesKeywords:Anomaly DetectionAttributed NetworksGraph Convolutional NetworkDeep Autoencoder
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双楠应助朱马大采纳,获得10
1秒前
1秒前
hyf发布了新的文献求助10
2秒前
幸福大白发布了新的文献求助10
3秒前
3秒前
zyw发布了新的文献求助10
3秒前
五六七发布了新的文献求助10
5秒前
闾丘剑封发布了新的文献求助10
5秒前
可爱的函函应助小晓采纳,获得10
8秒前
Owen应助SciEngineerX采纳,获得10
8秒前
幸福大白发布了新的文献求助30
9秒前
内向寒云完成签到,获得积分10
11秒前
CipherSage应助DC采纳,获得10
11秒前
淡然的花卷完成签到,获得积分10
12秒前
14秒前
无语的不言完成签到,获得积分20
15秒前
15秒前
慕青应助lzx采纳,获得10
16秒前
16秒前
16秒前
Orange应助欧耶采纳,获得10
17秒前
17秒前
17秒前
yyyyyyy完成签到,获得积分10
19秒前
SciEngineerX发布了新的文献求助10
20秒前
木木完成签到,获得积分10
20秒前
啧啧啧发布了新的文献求助10
21秒前
研友_VZG7GZ应助33采纳,获得30
21秒前
yyyyyyy发布了新的文献求助10
22秒前
22秒前
禹代秋发布了新的文献求助10
23秒前
杰2580发布了新的文献求助10
24秒前
25秒前
25秒前
幸福大白发布了新的文献求助30
25秒前
量子星尘发布了新的文献求助10
26秒前
禹代秋完成签到,获得积分10
26秒前
LAVINE完成签到 ,获得积分10
27秒前
欧耶发布了新的文献求助10
29秒前
啧啧啧完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989450
求助须知:如何正确求助?哪些是违规求助? 3531621
关于积分的说明 11254315
捐赠科研通 3270207
什么是DOI,文献DOI怎么找? 1804928
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809176