Deep Anomaly Detection on Attributed Networks

自编码 计算机科学 异常检测 深度学习 人工智能 节点(物理) 子空间拓扑 数据挖掘 机器学习 工程类 结构工程
作者
Kaize Ding,Jundong Li,Rohit Bhanushali,Liu Huan
出处
期刊:Society for Industrial and Applied Mathematics eBooks [Society for Industrial and Applied Mathematics]
卷期号:: 594-602 被引量:214
标识
DOI:10.1137/1.9781611975673.67
摘要

Attributed networks are ubiquitous and form a critical component of modern information infrastructure, where additional node attributes complement the raw network structure in knowledge discovery. Recently, detecting anomalous nodes on attributed networks has attracted an increasing amount of research attention, with broad applications in various high-impact domains, such as cybersecurity, finance, and healthcare. Most of the existing attempts, however, tackle the problem with shallow learning mechanisms by ego-network or community analysis, or through subspace selection. Undoubtedly, these models cannot fully address the computational challenges on attributed networks. For example, they often suffer from the network sparsity and data nonlinearity issues, and fail to capture the complex interactions between different information modalities, thus negatively impact the performance of anomaly detection. To tackle the aforementioned problems, in this paper, we study the anomaly detection problem on attributed networks by developing a novel deep model. In particular, our proposed deep model: (1) explicitly models the topological structure and nodal attributes seamlessly for node embedding learning with the prevalent graph convolutional network (GCN); and (2) is customized to address the anomaly detection problem by virtue of deep autoencoder that leverages the learned embeddings to reconstruct the original data. The synergy between GCN and autoencoder enables us to spot anomalies by measuring the reconstruction errors of nodes from both the structure and the attribute perspectives. Extensive experiments on real-world attributed network datasets demonstrate the efficacy of our proposed algorithm.MSC codesKeywords:Anomaly DetectionAttributed NetworksGraph Convolutional NetworkDeep Autoencoder
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wise111发布了新的文献求助10
1秒前
思源应助张昊采纳,获得10
2秒前
2秒前
3秒前
Eternal发布了新的文献求助10
4秒前
石友瑶发布了新的文献求助10
4秒前
4秒前
研友_Z6Qrbn发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI5应助chem采纳,获得10
4秒前
科研通AI5应助Guozixin采纳,获得30
4秒前
5秒前
liuliu发布了新的文献求助10
6秒前
是danoo完成签到,获得积分10
8秒前
002完成签到,获得积分10
8秒前
orixero应助llllda采纳,获得10
8秒前
陈蕴兮发布了新的文献求助10
8秒前
Xie发布了新的文献求助10
9秒前
jiemo_111完成签到,获得积分10
10秒前
Criminology34应助儒雅熊猫采纳,获得10
10秒前
10秒前
ceasar发布了新的文献求助10
11秒前
11秒前
lyj完成签到 ,获得积分10
12秒前
Hello应助研友_ZbP41L采纳,获得10
13秒前
神勇虾头发布了新的文献求助10
13秒前
Passskd发布了新的文献求助10
14秒前
15秒前
16秒前
希望天下0贩的0应助Eternal采纳,获得10
17秒前
韩恩轩完成签到,获得积分10
17秒前
zzzzzzzzzzzzx发布了新的文献求助10
17秒前
研友_VZG7GZ应助慕瓜采纳,获得10
18秒前
享受不良诱惑完成签到,获得积分10
18秒前
Theta完成签到,获得积分10
19秒前
19秒前
上官若男应助独孤妖月采纳,获得10
20秒前
石友瑶完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920