清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Anomaly Detection on Attributed Networks

自编码 计算机科学 异常检测 深度学习 人工智能 节点(物理) 子空间拓扑 数据挖掘 机器学习 工程类 结构工程
作者
Kaize Ding,Jundong Li,Rohit Bhanushali,Liu Huan
出处
期刊:Society for Industrial and Applied Mathematics eBooks [Society for Industrial and Applied Mathematics]
卷期号:: 594-602 被引量:214
标识
DOI:10.1137/1.9781611975673.67
摘要

Attributed networks are ubiquitous and form a critical component of modern information infrastructure, where additional node attributes complement the raw network structure in knowledge discovery. Recently, detecting anomalous nodes on attributed networks has attracted an increasing amount of research attention, with broad applications in various high-impact domains, such as cybersecurity, finance, and healthcare. Most of the existing attempts, however, tackle the problem with shallow learning mechanisms by ego-network or community analysis, or through subspace selection. Undoubtedly, these models cannot fully address the computational challenges on attributed networks. For example, they often suffer from the network sparsity and data nonlinearity issues, and fail to capture the complex interactions between different information modalities, thus negatively impact the performance of anomaly detection. To tackle the aforementioned problems, in this paper, we study the anomaly detection problem on attributed networks by developing a novel deep model. In particular, our proposed deep model: (1) explicitly models the topological structure and nodal attributes seamlessly for node embedding learning with the prevalent graph convolutional network (GCN); and (2) is customized to address the anomaly detection problem by virtue of deep autoencoder that leverages the learned embeddings to reconstruct the original data. The synergy between GCN and autoencoder enables us to spot anomalies by measuring the reconstruction errors of nodes from both the structure and the attribute perspectives. Extensive experiments on real-world attributed network datasets demonstrate the efficacy of our proposed algorithm.MSC codesKeywords:Anomaly DetectionAttributed NetworksGraph Convolutional NetworkDeep Autoencoder
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
25秒前
27秒前
熊猫胖胖WITH超人完成签到,获得积分20
30秒前
41秒前
耍酷平凡发布了新的文献求助10
46秒前
48秒前
ewxf2001发布了新的文献求助10
53秒前
55秒前
花园里的蒜完成签到 ,获得积分0
57秒前
荔枝发布了新的文献求助20
1分钟前
ewxf2001完成签到,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
cxwcn完成签到 ,获得积分10
1分钟前
Hiram完成签到,获得积分10
1分钟前
1分钟前
wmj完成签到,获得积分10
1分钟前
Ava应助落寞的又菡采纳,获得10
1分钟前
刚子完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
jiejie完成签到,获得积分10
3分钟前
3分钟前
沿途有你完成签到 ,获得积分10
3分钟前
耍酷平凡完成签到,获得积分10
3分钟前
荔枝发布了新的文献求助10
4分钟前
4分钟前
连安阳完成签到,获得积分10
4分钟前
5分钟前
荔枝发布了新的文献求助10
5分钟前
丁老三完成签到 ,获得积分10
5分钟前
6分钟前
Jim发布了新的文献求助10
7分钟前
7分钟前
7分钟前
两个榴莲完成签到,获得积分0
7分钟前
7分钟前
Unlisted发布了新的文献求助10
7分钟前
落寞的又菡完成签到,获得积分10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108