Latent Representation Learning for Alzheimer’s Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data

人工智能 神经影像学 计算机科学 正电子发射断层摄影术 缺少数据 机器学习 磁共振成像 代表(政治) 模式识别(心理学) 稳健性(进化) 特征学习 模式 模态(人机交互) 医学 心理学 放射科 神经科学 基因 社会学 政治 化学 法学 生物化学 社会科学 政治学
作者
Tao Zhou,Mingxia Liu,Kim‐Han Thung,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (10): 2411-2422 被引量:149
标识
DOI:10.1109/tmi.2019.2913158
摘要

The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助钟山采纳,获得10
1秒前
1秒前
3秒前
egggg发布了新的文献求助20
4秒前
4秒前
包尚易发布了新的文献求助30
4秒前
深情安青应助hh采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
SciGPT应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
Hello应助科研通管家采纳,获得30
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
浮游应助求助采纳,获得10
9秒前
haodong发布了新的文献求助20
9秒前
10秒前
romy发布了新的文献求助30
10秒前
冷静的忆秋完成签到,获得积分10
11秒前
空城完成签到 ,获得积分10
14秒前
14秒前
14秒前
箜箜完成签到,获得积分20
15秒前
淡定的迎梦完成签到,获得积分10
15秒前
领导范儿应助A1phaYi采纳,获得10
18秒前
18秒前
20秒前
小猪猪发布了新的文献求助30
20秒前
21秒前
Chen完成签到 ,获得积分10
21秒前
22秒前
慕青应助gguc采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431754
求助须知:如何正确求助?哪些是违规求助? 4544599
关于积分的说明 14193134
捐赠科研通 4463678
什么是DOI,文献DOI怎么找? 2446845
邀请新用户注册赠送积分活动 1438154
关于科研通互助平台的介绍 1414878