亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Latent Representation Learning for Alzheimer’s Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data

人工智能 神经影像学 计算机科学 正电子发射断层摄影术 缺少数据 机器学习 磁共振成像 代表(政治) 模式识别(心理学) 稳健性(进化) 特征学习 模式 模态(人机交互) 医学 心理学 放射科 神经科学 基因 社会学 政治 化学 法学 生物化学 社会科学 政治学
作者
Tao Zhou,Mingxia Liu,Kim‐Han Thung,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (10): 2411-2422 被引量:149
标识
DOI:10.1109/tmi.2019.2913158
摘要

The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美紫槐发布了新的文献求助10
刚刚
Criminology34举报高兴电脑求助涉嫌违规
4秒前
dida完成签到,获得积分10
12秒前
CipherSage应助lemon采纳,获得10
12秒前
陶醉的烤鸡完成签到 ,获得积分10
12秒前
12秒前
张子捷应助精明葶采纳,获得10
13秒前
16秒前
菲1208完成签到,获得积分10
19秒前
三三完成签到 ,获得积分0
21秒前
rwq完成签到 ,获得积分10
22秒前
慕青应助优美紫槐采纳,获得10
22秒前
英姑应助11111采纳,获得10
25秒前
刘瑞吉完成签到,获得积分10
27秒前
666完成签到,获得积分20
30秒前
34秒前
向北游完成签到 ,获得积分10
35秒前
35秒前
大模型应助段dwh采纳,获得10
38秒前
41秒前
11111发布了新的文献求助10
42秒前
45秒前
归去来兮发布了新的文献求助10
46秒前
47秒前
英姑应助旺拽硫乃采纳,获得10
48秒前
Cumin完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
52秒前
段dwh发布了新的文献求助10
52秒前
58秒前
1分钟前
1分钟前
大刘完成签到,获得积分10
1分钟前
1分钟前
lemon完成签到,获得积分10
1分钟前
无限火龙果完成签到,获得积分10
1分钟前
lemon发布了新的文献求助10
1分钟前
归去来兮发布了新的文献求助10
1分钟前
1分钟前
清脆天蓉完成签到,获得积分10
1分钟前
666发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595661
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14818037
捐赠科研通 4651473
什么是DOI,文献DOI怎么找? 2535551
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754