亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Latent Representation Learning for Alzheimer’s Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data

人工智能 神经影像学 计算机科学 正电子发射断层摄影术 缺少数据 机器学习 磁共振成像 代表(政治) 模式识别(心理学) 稳健性(进化) 特征学习 模式 模态(人机交互) 医学 心理学 放射科 神经科学 化学 社会学 基因 政治 政治学 法学 社会科学 生物化学
作者
Tao Zhou,Mingxia Liu,Kim‐Han Thung,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (10): 2411-2422 被引量:149
标识
DOI:10.1109/tmi.2019.2913158
摘要

The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
6秒前
8秒前
量子星尘发布了新的文献求助10
21秒前
魔幻友菱完成签到 ,获得积分10
24秒前
24秒前
46秒前
SciGPT应助小小K采纳,获得10
50秒前
吼吼哈嘿发布了新的文献求助10
54秒前
57秒前
57秒前
1分钟前
小小K发布了新的文献求助10
1分钟前
1分钟前
1分钟前
William完成签到 ,获得积分10
1分钟前
直率的摩托完成签到,获得积分20
1分钟前
1分钟前
1分钟前
LeeHx完成签到,获得积分10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Sean发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Criminology34举报瘦瘦的师求助涉嫌违规
2分钟前
sea完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
害羞的裘完成签到 ,获得积分10
2分钟前
Omni发布了新的文献求助10
2分钟前
null应助简单采纳,获得10
2分钟前
彭于晏应助着急的绿兰采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723857
求助须知:如何正确求助?哪些是违规求助? 5281752
关于积分的说明 15299292
捐赠科研通 4872127
什么是DOI,文献DOI怎么找? 2616571
邀请新用户注册赠送积分活动 1566419
关于科研通互助平台的介绍 1523277