亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy

无线电技术 医学 比例危险模型 接收机工作特性 肿瘤科 内科学 生物标志物 Lasso(编程语言) 相关性 放化疗 生存分析 放射治疗 放射科 生物 计算机科学 生物化学 几何学 数学 万维网
作者
Congying Xie,Pengfei Yang,Xuebang Zhang,Lei Xu,Xiaoju Wang,Xiadong Li,Luhan Zhang,Ruifei Xie,Ling Yang,Jing Zhao,Hongfang Zhang,Lingyu Ding,Yu Kuang,Tianye Niu,Shixiu Wu
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:44: 289-297 被引量:110
标识
DOI:10.1016/j.ebiom.2019.05.023
摘要

BackgroundEvaluating clinical outcome prior to concurrent chemoradiotherapy remains challenging for oesophageal squamous cell carcinoma (OSCC) as traditional prognostic markers are assessed at the completion of treatment. Herein, we investigated the potential of using sub-region radiomics as a novel tumour biomarker in predicting overall survival of OSCC patients treated by concurrent chemoradiotherapy.MethodsIndependent patient cohorts from two hospitals were included for training (n = 87) and validation (n = 46). Radiomics features were extracted from sub-regions clustered from patients' tumour regions using K-means method. The LASSO regression for 'Cox' method was used for feature selection. The survival prediction model was constructed based on the sub-region radiomics features using the Cox proportional hazards model. The clinical and biological significance of radiomics features were assessed by correlation analysis of clinical characteristics and copy number alterations(CNAs) in the validation dataset.FindingsThe overall survival prediction model combining with seven sub-regional radiomics features was constructed. The C-indexes of the proposed model were 0.729 (0.656–0.801, 95% CI) and 0.705 (0.628–0.782, 95%CI) in the training and validation cohorts, respectively. The 3-year survival receiver operating characteristic (ROC) curve showed an area under the ROC curve of 0.811 (0.670–0.952, 95%CI) in training and 0.805 (0.638–0.973, 95%CI) in validation. The correlation analysis showed a significant correlation between radiomics features and CNAs.InterpretationThe proposed sub-regional radiomics model could predict the overall survival risk for patients with OSCC treated by definitive concurrent chemoradiotherapy.FundThis work was supported by the Zhejiang Provincial Foundation for Natural Sciences, National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
科研通AI5应助白华苍松采纳,获得10
13秒前
14秒前
26秒前
35秒前
1分钟前
姜姜姜姜发布了新的文献求助10
1分钟前
1分钟前
李健应助姜姜姜姜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
敏敏9813发布了新的文献求助10
2分钟前
敏敏9813完成签到,获得积分10
2分钟前
赘婿应助xaogny采纳,获得10
2分钟前
孟繁荣完成签到,获得积分10
2分钟前
Prime完成签到 ,获得积分10
3分钟前
sissiarno完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
姜姜姜姜发布了新的文献求助10
3分钟前
浮游应助阿洁采纳,获得30
3分钟前
3分钟前
3分钟前
xaogny发布了新的文献求助10
3分钟前
lc完成签到,获得积分10
3分钟前
3分钟前
xaogny发布了新的文献求助10
4分钟前
4分钟前
白华苍松完成签到,获得积分10
4分钟前
白华苍松发布了新的文献求助10
4分钟前
ding应助冰箱采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
冰箱发布了新的文献求助10
5分钟前
隐形曼青应助无端采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918233
求助须知:如何正确求助?哪些是违规求助? 4190929
关于积分的说明 13015485
捐赠科研通 3960701
什么是DOI,文献DOI怎么找? 2171335
邀请新用户注册赠送积分活动 1189393
关于科研通互助平台的介绍 1097764