Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy

无线电技术 医学 比例危险模型 接收机工作特性 肿瘤科 内科学 生物标志物 Lasso(编程语言) 相关性 放化疗 生存分析 放射治疗 放射科 生物 计算机科学 万维网 生物化学 数学 几何学
作者
Congying Xie,Pengfei Yang,Xuebang Zhang,Lei Xu,Xiaoju Wang,Xiadong Li,Luhan Zhang,Ruifei Xie,Ling Yang,Jing Zhao,Hongfang Zhang,Lingyu Ding,Yu Kuang,Tianye Niu,Shixiu Wu
出处
期刊:EBioMedicine [Elsevier]
卷期号:44: 289-297 被引量:80
标识
DOI:10.1016/j.ebiom.2019.05.023
摘要

BackgroundEvaluating clinical outcome prior to concurrent chemoradiotherapy remains challenging for oesophageal squamous cell carcinoma (OSCC) as traditional prognostic markers are assessed at the completion of treatment. Herein, we investigated the potential of using sub-region radiomics as a novel tumour biomarker in predicting overall survival of OSCC patients treated by concurrent chemoradiotherapy.MethodsIndependent patient cohorts from two hospitals were included for training (n = 87) and validation (n = 46). Radiomics features were extracted from sub-regions clustered from patients' tumour regions using K-means method. The LASSO regression for ‘Cox’ method was used for feature selection. The survival prediction model was constructed based on the sub-region radiomics features using the Cox proportional hazards model. The clinical and biological significance of radiomics features were assessed by correlation analysis of clinical characteristics and copy number alterations(CNAs) in the validation dataset.FindingsThe overall survival prediction model combining with seven sub-regional radiomics features was constructed. The C-indexes of the proposed model were 0.729 (0.656–0.801, 95% CI) and 0.705 (0.628–0.782, 95%CI) in the training and validation cohorts, respectively. The 3-year survival receiver operating characteristic (ROC) curve showed an area under the ROC curve of 0.811 (0.670–0.952, 95%CI) in training and 0.805 (0.638–0.973, 95%CI) in validation. The correlation analysis showed a significant correlation between radiomics features and CNAs.InterpretationThe proposed sub-regional radiomics model could predict the overall survival risk for patients with OSCC treated by definitive concurrent chemoradiotherapy.FundThis work was supported by the Zhejiang Provincial Foundation for Natural Sciences, National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向阳花完成签到,获得积分10
3秒前
重要的菲鹰完成签到 ,获得积分10
3秒前
4秒前
SciGPT应助温婉的紫霜采纳,获得10
5秒前
成就书雪完成签到,获得积分10
6秒前
6秒前
陈生完成签到,获得积分20
8秒前
fxy应助头上有犄角bb采纳,获得10
8秒前
8秒前
Fei发布了新的文献求助10
9秒前
13秒前
14秒前
高发发布了新的文献求助10
14秒前
漂亮老头发布了新的文献求助10
14秒前
wang发布了新的文献求助10
17秒前
等你下课听暗号完成签到,获得积分10
19秒前
20秒前
wanci应助科研通管家采纳,获得10
20秒前
高发完成签到,获得积分10
21秒前
和谐的修洁完成签到,获得积分10
23秒前
漂亮老头完成签到,获得积分10
25秒前
在水一方应助番豆采纳,获得10
27秒前
Fei发布了新的文献求助10
31秒前
31秒前
小涛完成签到,获得积分10
32秒前
叶楠完成签到,获得积分10
34秒前
执念完成签到 ,获得积分10
37秒前
38秒前
42秒前
义气幼珊完成签到 ,获得积分10
43秒前
50秒前
wang关注了科研通微信公众号
51秒前
52秒前
55秒前
彩色半芹发布了新的文献求助10
55秒前
内向的小凡完成签到,获得积分10
55秒前
阿呆发布了新的文献求助10
57秒前
科研通AI2S应助危机的寄文采纳,获得10
1分钟前
清脆安南完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187