An Additive-Consistency- and Consensus-Based Approach for Uncertain Group Decision Making With Linguistic Preference Relations

一致性(知识库) 群体决策 成对比较 偏爱 一致性指数 一致性模型 计算机科学 弱一致性 数学 语言学 人工智能 强一致性 统计 心理学 算法 社会心理学 材料科学 流变学 估计员 正确性 复合材料 哲学
作者
Jing-Feng Tian,Zhiming Zhang,Ming-Hu Ha
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 873-887 被引量:43
标识
DOI:10.1109/tfuzz.2018.2865132
摘要

Linguistic preference relations (LPRs) can indicate the decision makers (DMs)' qualitative pairwise judgments regarding a set of alternatives in uncertain multicriteria decision-making problems. This paper examines several goal programming models for managing the additive consistency and consensus of LPRs and then develops an additive-consistency- and consensus-based method for group decision making (GDM) with LPRs. First, this paper offers a consistency index to quantify the consistency level for LPRs and define acceptable consistent LPRs. For an LPR that is unacceptably additive consistent, several additive-consistency-based programming models are developed to address the inconsistency and to establish an acceptably consistent LPR. Then, an additive-consistency-based procedure to generate the priority weight vector from the LPR is offered. An additive-consistency-based algorithm for decision making with an LPR is presented. Subsequently, considering the consensus in GDM, a consensus index is proposed for gauging the agreement degree among individual LPRs. Regarding individual LPRs that do not exhibit acceptably additive consistency or acceptable consensus, several goal programming models to derive new LPRs with acceptable consistency and consensus are provided. Afterward, the DMs' weights are determined objectively, and individual LPRs are integrated into a collective LPR. An additive-consistency- and consensus-based GDM method with a group of LPRs is developed. Finally, two practical numerical examples are offered, and a comparative analysis is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
可爱的微笑完成签到 ,获得积分10
1秒前
1秒前
wuqs发布了新的文献求助10
2秒前
花灯王子完成签到,获得积分10
2秒前
充电宝应助Felixsun采纳,获得10
2秒前
2秒前
qiuli发布了新的文献求助10
2秒前
3秒前
香香完成签到 ,获得积分20
3秒前
李晓彤发布了新的文献求助10
3秒前
烂漫的书蕾完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
wuran发布了新的文献求助10
5秒前
花灯王子发布了新的文献求助30
5秒前
思源应助千里采纳,获得10
5秒前
5秒前
伽娜发布了新的文献求助10
6秒前
6秒前
So完成签到,获得积分10
6秒前
叶女士完成签到,获得积分10
6秒前
ziyue发布了新的文献求助30
6秒前
观察者完成签到,获得积分10
7秒前
CasterL完成签到,获得积分10
7秒前
阔达忆秋完成签到 ,获得积分10
7秒前
一平发布了新的文献求助10
7秒前
wuqs完成签到,获得积分10
7秒前
顾瑶发布了新的文献求助10
7秒前
麒ww完成签到 ,获得积分10
7秒前
nayuta发布了新的文献求助20
7秒前
7秒前
晨曦刘发布了新的文献求助10
8秒前
Owen应助薯片采纳,获得10
8秒前
8秒前
可乐加冰完成签到 ,获得积分10
8秒前
852应助弥弥采纳,获得10
8秒前
Jiaqing完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285