Sandwich-like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials

石墨烯 材料科学 阳极 离子 锂(药物) 电池(电) 纳米技术 电极 物理 物理化学 热力学 化学 内分泌学 有机化学 冶金 功率(物理) 医学
作者
Yong Jiang,Daiyun Song,Juan Wu,Zhixuan Wang,Shoushuang Huang,Yi Xu,Zhiwen Chen,Bing Zhao,Jiujun Zhang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (8): 9100-9111 被引量:326
标识
DOI:10.1021/acsnano.9b03330
摘要

SnS2 materials have attracted broad attention in the field of electrochemical energy storage due to their layered structure with high specific capacity. However, the easy restacking property during charge/discharge cycling leads to electrode structure instability and a severe capacity decrease. In this paper, we report a simple one-step hydrothermal synthesis of SnS2/graphene/SnS2 (SnS2/rGO/SnS2) composite with ultrathin SnS2 nanosheets covalently decorated on both sides of reduced graphene oxide sheets via C-S bonds. Owing to the graphene sandwiched between two SnS2 sheets, the composite presents an enlarged interlayer spacing of ∼8.03 Å for SnS2, which could facilitate the insertion/extraction of Li+/Na+ ions with rapid transport kinetics as well as inhibit the restacking of SnS2 nanosheets during the charge/discharge cycling. The density functional theory calculation reveals the most stable state of the moderate interlayer spacing for the sandwich-like composite. The diffusion coefficients of Li/Na ions from both molecular simulation and experimental observation also demonstrate that this state is the most suitable for fast ion transport. In addition, numerous ultratiny SnS2 nanoparticles anchored on the graphene sheets can generate dominant pseudocapacitive contribution to the composite especially at large current density, guaranteeing its excellent high-rate performance with 844 and 765 mAh g-1 for Li/Na-ion batteries even at 10 A g-1. No distinct morphology changes occur after 200 cycles, and the SnS2 nanoparticles still recover to a pristine phase without distinct agglomeration, demonstrating that this composite with high-rate capabilities and excellent cycle stability are promising candidates for lithium/sodium storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无止完成签到,获得积分10
刚刚
天天快乐应助kangkang采纳,获得30
刚刚
疑夕发布了新的文献求助10
刚刚
Orange应助123yaoyao采纳,获得10
刚刚
tian发布了新的文献求助10
1秒前
zuhayr发布了新的文献求助10
1秒前
背后的雨竹完成签到,获得积分20
1秒前
1秒前
1秒前
嵩易凯发布了新的文献求助10
1秒前
生命科学的第一推动力完成签到 ,获得积分10
2秒前
2秒前
2秒前
gxmu6322完成签到,获得积分10
3秒前
yuanyuan发布了新的文献求助10
4秒前
DODO完成签到,获得积分10
4秒前
llllll完成签到 ,获得积分10
4秒前
5秒前
5秒前
李健的小迷弟应助DD采纳,获得10
5秒前
5秒前
小锤发布了新的文献求助10
6秒前
吉师大_科研完成签到,获得积分10
7秒前
勤劳怜寒发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
嵩易凯完成签到,获得积分10
8秒前
8秒前
8秒前
子沐晨兮完成签到 ,获得积分10
8秒前
Zemo完成签到,获得积分10
9秒前
10秒前
bunnytunn完成签到 ,获得积分10
10秒前
李爱国应助tian采纳,获得10
11秒前
个性的紫菜应助爬不起来采纳,获得20
11秒前
12秒前
12秒前
京城世界发布了新的文献求助10
13秒前
子沐晨兮关注了科研通微信公众号
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559