光催化
异质结
可见光谱
材料科学
光电子学
氢氧化物
化学工程
氧化物
纳米颗粒
电化学
光化学
纳米技术
化学
催化作用
冶金
有机化学
电极
物理化学
工程类
作者
Wei Li,Shu‐ao He,Xiao Wang,Qiong Ma,Chenhui Zhao
摘要
β-iron oxide hydroxide (β-FeOOH) had been proven to be an effective co-catalyst during H2 evolution reaction (HER) process. In this research, a BiOCl/β-FeOOH heterojunction was successfully synthesized by a solid-state doping method. Then, the structure, composition, and photo-electrochemical properties of the prepared photocatalysts were studied. For the superior HER photocatalytic activity of ultrasmall β-FeOOH nanoparticles (NPs) and the formation of the BiOCl/β-FeOOH heterojunction, this heterojunction photocatalyst exhibited very superior photocatalytic performance in the HER process. Especially, when the amount of incorporated β-FeOOH NPs was appropriate, the BFOH-2 possessed the highest photocatalytic activity in HER process, and the HER rate was about 16.64 mmol·g−1·h−1 during illuminated time of 6 hours under visible light. When appropriate, ultrasmall β-FeOOH NPs were implanted into the structure of BiOCl, the BiOCl/β-FeOOH heterojunction interfaces would form for the existence of interfacial interactions. Therefore, this BiOCl/β-FeOOH heterojunction exhibited superior visible-light response, fast photo-carrier migration, and high-efficient separation of photo-carriers, so that the BFOH-2 heterojunction possessed high-efficient hydrogen evolution reaction (HER) photocatalytic activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI