亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set

乳腺癌 逻辑回归 新辅助治疗 多元统计 接收机工作特性 医学 多元分析 癌症 试验装置 递归分区 磁共振成像 肿瘤科 人工智能 机器学习 计算机科学 内科学 放射科
作者
Elizabeth Hope Cain,Ashirbani Saha,Michael R. Harowicz,Jeffrey R. Marks,P. Kelly Marcom,Maciej A. Mazurowski
出处
期刊:Breast Cancer Research and Treatment [Springer Science+Business Media]
卷期号:173 (2): 455-463 被引量:141
标识
DOI:10.1007/s10549-018-4990-9
摘要

To determine whether a multivariate machine learning-based model using computer-extracted features of pre-treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer patients. Institutional review board approval was obtained for this retrospective study of 288 breast cancer patients at our institution who received NAT and had a pre-treatment breast MRI. A comprehensive set of 529 radiomic features was extracted from each patient’s pre-treatment MRI. The patients were divided into equal groups to form a training set and an independent test set. Two multivariate machine learning models (logistic regression and a support vector machine) based on imaging features were trained to predict pCR in (a) all patients with NAT, (b) patients with neoadjuvant chemotherapy (NACT), and (c) triple-negative or human epidermal growth factor receptor 2-positive (TN/HER2+) patients who had NAT. The multivariate models were tested using the independent test set, and the area under the receiver operating characteristics (ROC) curve (AUC) was calculated. Out of the 288 patients, 64 achieved pCR. The AUC values for predicting pCR in TN/HER+ patients who received NAT were significant (0.707, 95% CI 0.582–0.833, p < 0.002). The multivariate models based on pre-treatment MRI features were able to predict pCR in TN/HER2+ patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简因完成签到 ,获得积分10
27秒前
44秒前
49秒前
大个应助Nill采纳,获得10
49秒前
leo完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
dagangwood完成签到 ,获得积分10
1分钟前
Hanzoe应助oleskarabach采纳,获得10
2分钟前
rpe完成签到,获得积分10
2分钟前
科研小白完成签到 ,获得积分10
2分钟前
英俊的铭应助Swait采纳,获得10
2分钟前
4分钟前
Swait发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小新小新完成签到 ,获得积分10
5分钟前
5分钟前
Nill发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助30
6分钟前
bruna驳回了Hayat应助
6分钟前
6分钟前
sc发布了新的文献求助10
7分钟前
大模型应助Nill采纳,获得10
7分钟前
Suagy应助sc采纳,获得10
7分钟前
8分钟前
北斗发布了新的文献求助10
8分钟前
隐形曼青应助北斗采纳,获得10
8分钟前
sc完成签到,获得积分20
8分钟前
8分钟前
swg发布了新的文献求助10
8分钟前
嘻嘻完成签到,获得积分10
8分钟前
9分钟前
www完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
9分钟前
科研通AI5应助吴门烟水采纳,获得10
10分钟前
爆米花应助Sience采纳,获得10
10分钟前
10分钟前
量子星尘发布了新的文献求助20
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611818
求助须知:如何正确求助?哪些是违规求助? 4017250
关于积分的说明 12436143
捐赠科研通 3699213
什么是DOI,文献DOI怎么找? 2040014
邀请新用户注册赠送积分活动 1072811
科研通“疑难数据库(出版商)”最低求助积分说明 956522