Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set

乳腺癌 逻辑回归 新辅助治疗 多元统计 接收机工作特性 医学 多元分析 癌症 试验装置 递归分区 磁共振成像 肿瘤科 人工智能 机器学习 计算机科学 内科学 放射科
作者
Elizabeth Hope Cain,Ashirbani Saha,Michael R. Harowicz,Jeffrey R. Marks,P. Kelly Marcom,Maciej A. Mazurowski
出处
期刊:Breast Cancer Research and Treatment [Springer Science+Business Media]
卷期号:173 (2): 455-463 被引量:141
标识
DOI:10.1007/s10549-018-4990-9
摘要

To determine whether a multivariate machine learning-based model using computer-extracted features of pre-treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer patients. Institutional review board approval was obtained for this retrospective study of 288 breast cancer patients at our institution who received NAT and had a pre-treatment breast MRI. A comprehensive set of 529 radiomic features was extracted from each patient’s pre-treatment MRI. The patients were divided into equal groups to form a training set and an independent test set. Two multivariate machine learning models (logistic regression and a support vector machine) based on imaging features were trained to predict pCR in (a) all patients with NAT, (b) patients with neoadjuvant chemotherapy (NACT), and (c) triple-negative or human epidermal growth factor receptor 2-positive (TN/HER2+) patients who had NAT. The multivariate models were tested using the independent test set, and the area under the receiver operating characteristics (ROC) curve (AUC) was calculated. Out of the 288 patients, 64 achieved pCR. The AUC values for predicting pCR in TN/HER+ patients who received NAT were significant (0.707, 95% CI 0.582–0.833, p < 0.002). The multivariate models based on pre-treatment MRI features were able to predict pCR in TN/HER2+ patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷曼婷发布了新的文献求助10
刚刚
灵巧秋天发布了新的文献求助10
刚刚
刚刚
1秒前
赫连立果完成签到,获得积分10
1秒前
科研通AI6应助Stean采纳,获得10
1秒前
Lz完成签到,获得积分10
2秒前
纳兰嫣然发布了新的文献求助10
2秒前
3秒前
搜集达人应助俭朴士晋采纳,获得10
4秒前
可爱的函函应助炊饼采纳,获得30
4秒前
机智依丝发布了新的文献求助10
5秒前
Ava应助跳跃稀采纳,获得20
5秒前
小茉莉爱学习完成签到,获得积分10
5秒前
童0731完成签到,获得积分10
5秒前
zgt01发布了新的文献求助10
6秒前
6秒前
豆瓣酱发布了新的文献求助10
6秒前
我是老大应助灵巧秋天采纳,获得10
7秒前
所所应助黎明采纳,获得10
7秒前
8秒前
橙海晚风完成签到 ,获得积分10
9秒前
9秒前
orixero应助机智依丝采纳,获得10
9秒前
英俊的铭应助123采纳,获得10
10秒前
俭朴士晋完成签到,获得积分10
10秒前
zrx15986完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
龙星完成签到,获得积分10
11秒前
BowieHuang应助视野胤采纳,获得10
11秒前
不要水肿了完成签到,获得积分10
12秒前
852应助ccm采纳,获得10
13秒前
小小完成签到,获得积分10
13秒前
辛勤的绮琴完成签到,获得积分10
14秒前
啦啦啦啦啦完成签到,获得积分10
14秒前
xiyue发布了新的文献求助10
14秒前
hhh发布了新的文献求助10
15秒前
16秒前
充电宝应助syyyy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259826
求助须知:如何正确求助?哪些是违规求助? 4421346
关于积分的说明 13762778
捐赠科研通 4295329
什么是DOI,文献DOI怎么找? 2356838
邀请新用户注册赠送积分活动 1353198
关于科研通互助平台的介绍 1314374