Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set

乳腺癌 逻辑回归 新辅助治疗 多元统计 接收机工作特性 医学 多元分析 癌症 试验装置 递归分区 磁共振成像 肿瘤科 人工智能 机器学习 计算机科学 内科学 放射科
作者
Elizabeth Hope Cain,Ashirbani Saha,Michael R. Harowicz,Jeffrey R. Marks,P. Kelly Marcom,Maciej A. Mazurowski
出处
期刊:Breast Cancer Research and Treatment [Springer Science+Business Media]
卷期号:173 (2): 455-463 被引量:141
标识
DOI:10.1007/s10549-018-4990-9
摘要

To determine whether a multivariate machine learning-based model using computer-extracted features of pre-treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer patients. Institutional review board approval was obtained for this retrospective study of 288 breast cancer patients at our institution who received NAT and had a pre-treatment breast MRI. A comprehensive set of 529 radiomic features was extracted from each patient’s pre-treatment MRI. The patients were divided into equal groups to form a training set and an independent test set. Two multivariate machine learning models (logistic regression and a support vector machine) based on imaging features were trained to predict pCR in (a) all patients with NAT, (b) patients with neoadjuvant chemotherapy (NACT), and (c) triple-negative or human epidermal growth factor receptor 2-positive (TN/HER2+) patients who had NAT. The multivariate models were tested using the independent test set, and the area under the receiver operating characteristics (ROC) curve (AUC) was calculated. Out of the 288 patients, 64 achieved pCR. The AUC values for predicting pCR in TN/HER+ patients who received NAT were significant (0.707, 95% CI 0.582–0.833, p < 0.002). The multivariate models based on pre-treatment MRI features were able to predict pCR in TN/HER2+ patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cooper完成签到 ,获得积分10
刚刚
HarryQ完成签到,获得积分10
1秒前
wxj发布了新的文献求助10
1秒前
咕咕嘎嘎完成签到,获得积分10
1秒前
2秒前
俭朴的可冥完成签到,获得积分10
2秒前
Yang_728发布了新的文献求助10
2秒前
科研通AI5应助岛屿采纳,获得10
2秒前
Cxxxxxxv完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助50
4秒前
4秒前
TIPHA发布了新的文献求助10
4秒前
艾欧大贝发布了新的文献求助10
5秒前
赘婿应助XYT采纳,获得10
5秒前
科研通AI5应助SONG采纳,获得10
5秒前
5秒前
5秒前
美好向日葵完成签到,获得积分10
6秒前
7秒前
彭于晏应助Sarah采纳,获得10
7秒前
深情安青应助激情的一斩采纳,获得10
7秒前
火星上如松完成签到 ,获得积分10
8秒前
孔大漂亮发布了新的文献求助10
8秒前
Huang_Liuying应助毛毛弟采纳,获得10
9秒前
9秒前
9秒前
你今天学了多少完成签到 ,获得积分10
9秒前
萌小鱼完成签到 ,获得积分10
10秒前
眼睛大的冷风完成签到 ,获得积分10
10秒前
共享精神应助wxj采纳,获得10
10秒前
CCL应助ZHT采纳,获得20
11秒前
万能图书馆应助zwxzwx采纳,获得10
11秒前
CodeCraft应助Lll采纳,获得10
11秒前
hm发布了新的文献求助10
12秒前
13秒前
水shui完成签到,获得积分10
13秒前
浮游应助冯淑婷采纳,获得10
13秒前
14秒前
小老虎Milly完成签到,获得积分10
14秒前
wanci应助艾欧大贝采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917