Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set

乳腺癌 逻辑回归 新辅助治疗 多元统计 接收机工作特性 医学 多元分析 癌症 试验装置 递归分区 磁共振成像 肿瘤科 人工智能 机器学习 计算机科学 内科学 放射科
作者
Elizabeth Hope Cain,Ashirbani Saha,Michael R. Harowicz,Jeffrey R. Marks,P. Kelly Marcom,Maciej A. Mazurowski
出处
期刊:Breast Cancer Research and Treatment [Springer Nature]
卷期号:173 (2): 455-463 被引量:141
标识
DOI:10.1007/s10549-018-4990-9
摘要

To determine whether a multivariate machine learning-based model using computer-extracted features of pre-treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer patients. Institutional review board approval was obtained for this retrospective study of 288 breast cancer patients at our institution who received NAT and had a pre-treatment breast MRI. A comprehensive set of 529 radiomic features was extracted from each patient’s pre-treatment MRI. The patients were divided into equal groups to form a training set and an independent test set. Two multivariate machine learning models (logistic regression and a support vector machine) based on imaging features were trained to predict pCR in (a) all patients with NAT, (b) patients with neoadjuvant chemotherapy (NACT), and (c) triple-negative or human epidermal growth factor receptor 2-positive (TN/HER2+) patients who had NAT. The multivariate models were tested using the independent test set, and the area under the receiver operating characteristics (ROC) curve (AUC) was calculated. Out of the 288 patients, 64 achieved pCR. The AUC values for predicting pCR in TN/HER+ patients who received NAT were significant (0.707, 95% CI 0.582–0.833, p < 0.002). The multivariate models based on pre-treatment MRI features were able to predict pCR in TN/HER2+ patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HCl完成签到,获得积分10
刚刚
刚刚
1秒前
Owen应助11111采纳,获得10
1秒前
yjdong发布了新的文献求助10
2秒前
躺着睡觉完成签到 ,获得积分10
2秒前
慕青应助搞怪的鱼采纳,获得10
2秒前
ELITOmiko完成签到,获得积分10
2秒前
3秒前
QWSS完成签到,获得积分20
3秒前
DXDXJX完成签到,获得积分0
4秒前
ding应助可靠的寒风采纳,获得10
4秒前
科研通AI6应助包容代芹采纳,获得10
5秒前
5秒前
Planck发布了新的文献求助10
5秒前
1x3完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
危机的易梦完成签到,获得积分10
8秒前
优TT发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
王科完成签到,获得积分10
12秒前
GGbond完成签到,获得积分10
12秒前
吴巷玉完成签到,获得积分10
12秒前
13秒前
软软萌萌关注了科研通微信公众号
13秒前
13秒前
13秒前
叶95发布了新的文献求助30
14秒前
14秒前
超级碧曼完成签到,获得积分10
14秒前
搞怪的鱼发布了新的文献求助10
15秒前
SciGPT应助摸鱼鱼采纳,获得10
15秒前
似雨若离发布了新的文献求助10
15秒前
会飞发布了新的文献求助10
16秒前
onlooker完成签到 ,获得积分10
17秒前
小二郎应助yjdong采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858