Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set

乳腺癌 逻辑回归 新辅助治疗 多元统计 接收机工作特性 医学 多元分析 癌症 试验装置 递归分区 磁共振成像 肿瘤科 人工智能 机器学习 计算机科学 内科学 放射科
作者
Elizabeth Hope Cain,Ashirbani Saha,Michael R. Harowicz,Jeffrey R. Marks,P. Kelly Marcom,Maciej A. Mazurowski
出处
期刊:Breast Cancer Research and Treatment [Springer Nature]
卷期号:173 (2): 455-463 被引量:141
标识
DOI:10.1007/s10549-018-4990-9
摘要

To determine whether a multivariate machine learning-based model using computer-extracted features of pre-treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer patients. Institutional review board approval was obtained for this retrospective study of 288 breast cancer patients at our institution who received NAT and had a pre-treatment breast MRI. A comprehensive set of 529 radiomic features was extracted from each patient’s pre-treatment MRI. The patients were divided into equal groups to form a training set and an independent test set. Two multivariate machine learning models (logistic regression and a support vector machine) based on imaging features were trained to predict pCR in (a) all patients with NAT, (b) patients with neoadjuvant chemotherapy (NACT), and (c) triple-negative or human epidermal growth factor receptor 2-positive (TN/HER2+) patients who had NAT. The multivariate models were tested using the independent test set, and the area under the receiver operating characteristics (ROC) curve (AUC) was calculated. Out of the 288 patients, 64 achieved pCR. The AUC values for predicting pCR in TN/HER+ patients who received NAT were significant (0.707, 95% CI 0.582–0.833, p < 0.002). The multivariate models based on pre-treatment MRI features were able to predict pCR in TN/HER2+ patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷雷发布了新的文献求助10
刚刚
ZZY发布了新的文献求助10
刚刚
未晚发布了新的文献求助10
刚刚
1秒前
科研通AI6应助冷酷的寒烟采纳,获得10
1秒前
3秒前
森林发布了新的文献求助10
3秒前
单身的淇发布了新的文献求助10
4秒前
丘比特应助wangshibing采纳,获得10
4秒前
上官若男应助Goyounjung采纳,获得10
5秒前
细腻的外套完成签到,获得积分10
5秒前
高高紫烟发布了新的文献求助10
5秒前
LUNIX发布了新的文献求助10
5秒前
在水一方应助577采纳,获得10
5秒前
5秒前
5秒前
无辜的南瓜完成签到,获得积分10
6秒前
可爱的函函应助杨德帅采纳,获得10
6秒前
6秒前
大壮完成签到 ,获得积分20
7秒前
kkkkkk8发布了新的文献求助10
7秒前
7秒前
8秒前
sc发布了新的文献求助10
8秒前
魔音甜菜发布了新的文献求助10
8秒前
隐形的纸鹤完成签到,获得积分10
8秒前
9秒前
9秒前
英姑应助Huang采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Res_M完成签到,获得积分10
10秒前
von发布了新的文献求助10
10秒前
尊敬采发布了新的文献求助10
10秒前
gwfew发布了新的文献求助10
11秒前
EF发布了新的文献求助10
11秒前
捕鱼小猫勇往直前完成签到,获得积分10
12秒前
12秒前
ZZY完成签到,获得积分10
13秒前
熬夜波比应助Rain采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082