Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set

乳腺癌 逻辑回归 新辅助治疗 多元统计 接收机工作特性 医学 多元分析 癌症 试验装置 递归分区 磁共振成像 肿瘤科 人工智能 机器学习 计算机科学 内科学 放射科
作者
Elizabeth Hope Cain,Ashirbani Saha,Michael R. Harowicz,Jeffrey R. Marks,P. Kelly Marcom,Maciej A. Mazurowski
出处
期刊:Breast Cancer Research and Treatment [Springer Nature]
卷期号:173 (2): 455-463 被引量:141
标识
DOI:10.1007/s10549-018-4990-9
摘要

To determine whether a multivariate machine learning-based model using computer-extracted features of pre-treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer patients. Institutional review board approval was obtained for this retrospective study of 288 breast cancer patients at our institution who received NAT and had a pre-treatment breast MRI. A comprehensive set of 529 radiomic features was extracted from each patient’s pre-treatment MRI. The patients were divided into equal groups to form a training set and an independent test set. Two multivariate machine learning models (logistic regression and a support vector machine) based on imaging features were trained to predict pCR in (a) all patients with NAT, (b) patients with neoadjuvant chemotherapy (NACT), and (c) triple-negative or human epidermal growth factor receptor 2-positive (TN/HER2+) patients who had NAT. The multivariate models were tested using the independent test set, and the area under the receiver operating characteristics (ROC) curve (AUC) was calculated. Out of the 288 patients, 64 achieved pCR. The AUC values for predicting pCR in TN/HER+ patients who received NAT were significant (0.707, 95% CI 0.582–0.833, p < 0.002). The multivariate models based on pre-treatment MRI features were able to predict pCR in TN/HER2+ patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSmiao完成签到,获得积分20
1秒前
Hellowa完成签到,获得积分10
1秒前
开朗寇完成签到,获得积分10
1秒前
song完成签到,获得积分10
1秒前
1秒前
1秒前
所所应助尊敬的高跟鞋采纳,获得10
2秒前
程逸晨发布了新的文献求助10
2秒前
田田田田完成签到,获得积分10
2秒前
小晴天发布了新的文献求助10
2秒前
MIMI完成签到,获得积分10
2秒前
不摇头的向日葵完成签到,获得积分10
2秒前
SciGPT应助1111采纳,获得10
2秒前
跳跃的凌文完成签到 ,获得积分10
3秒前
3秒前
香蕉诗蕊应助青枫采纳,获得10
4秒前
4秒前
4秒前
思源应助K先生采纳,获得10
4秒前
JOSIELO完成签到 ,获得积分10
4秒前
黄柒柒发布了新的文献求助10
5秒前
Li应助仁爱的秋天采纳,获得10
5秒前
香蕉诗蕊应助muzi采纳,获得10
5秒前
6秒前
万能图书馆应助小铭同学采纳,获得80
6秒前
Ricky发布了新的文献求助10
6秒前
neverlost6发布了新的文献求助10
6秒前
wuran发布了新的文献求助30
7秒前
rnanoda完成签到,获得积分10
7秒前
8秒前
天天快乐应助棉花糖采纳,获得10
8秒前
tianliangjie9712完成签到,获得积分10
9秒前
科研通AI6应助sunyanghu369采纳,获得10
9秒前
CNS关闭了CNS文献求助
9秒前
金雪发布了新的文献求助10
9秒前
英勇的飞扬完成签到,获得积分10
9秒前
星辰大海应助低调的涵内采纳,获得10
10秒前
青阳完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285