小胶质细胞
生物
促炎细胞因子
脂多糖
细胞因子
免疫学
医学
细胞生物学
炎症
作者
Yan Chen,Jian Sun,Wankun Chen,Gen-Cheng Wu,Yan-qing Wang,Kun Zhu,Jun Wang
标识
DOI:10.1038/s41392-019-0061-x
摘要
Activation of microglia and the subsequently elevated inflammatory cytokine release in the brain during surgery predispose individuals to cognitive dysfunction, also known as postoperative cognitive dysfunction (POCD). miR-124 is one of the most abundant microRNAs in the brain that regulates microglial function. Elucidating the role of miR-124 in microglial activation in the context of surgery may therefore promote understanding of as well as therapeutic development for post-surgical disorders involving microglial activation. The downstream targets of miR-124 were investigated using bioinformatic screening and dual-luciferase reporter assay validation, and vesicle-associated membrane protein 3 (VAMP3) was identified as a potential target. The kinetics of miR-124/VAMP3 expression was first examined in vitro in microglial cells (primary microglia and BV2 microglial cells) following lipopolysaccharide (LPS) stimulation. LPS induced a time-dependent decrease of miR-124 and upregulated the expression of VAMP3. Manipulating miR-124/VAMP3 expression by using miR-124 mimics or VAMP3-specific siRNA in LPS-stimulated BV2 microglial cells inhibited BV2 microglial activation-associated inflammatory cytokine release. To further examine the role of miR-124/VAMP3 in a surgical setting, we employed a rat surgical trauma model. Significant microglial activation and altered miR-124/VAMP3 expression were observed following surgical trauma. We also altered miR-124/VAMP3 expression in the rat surgical trauma model by administration of exogenous miR-124 and by using electroacupuncture, which is a clinically applicable treatment that modulates microglial function and minimizes postoperative disorders. We determined that electroacupuncture treatment specifically increases the expression of miR-124 in the hypothalamus and hippocampus. Increased miR-124 expression with a concomitant decrease in VAMP3 expression resulted in decreased inflammatory cytokine release related to microglial activation post-surgery. Our study indicates that miR-124/VAMP3 is involved in surgery-induced microglial activation and that targeting miR-124/VAMP3 could be a potential therapeutic strategy for postoperative disorders involving microglial activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI