适体
计算生物学
互补性(分子生物学)
结合选择性
DNA
化学
核糖核酸
表位
组合化学
结合位点
对接(动物)
互补决定区
生物物理学
分子生物学
生物
生物化学
遗传学
医学
抗体
肽序列
基因
护理部
摘要
Abstract Several molecular modeling programs including Pep‐Fold 3, Vienna RNA, RNA Composer, Avogadro, PatchDock, RasMol, and VMD were used to define the three‐dimensional and basic binding characteristics of an extant sandwich DNA aptamer assay complex for human brain natriuretic peptide (BNP). In particular, the theoretical question of demonstrating likely binding of 72 base capture and reporter aptamers to at least two separate “epitopes” or binding sites on the small 32‐amino acid BNP target was addressed, and the data support the existence of separate aptamer binding sites on BNP. The binding model was based on first docking BNP to the capture aptamer based on shape complementarity with PatchDock, followed by docking the capture aptamer‐BNP complex with the reporter aptamer in PatchDock. Although, shape complementarity clearly dominated this binding model and aptamers are known to be somewhat flexible, the model demonstrates hydrogen bond stabilization within each of the two different aptamers and between the aptamers and the BNP target, thus suggesting a strong binding and high affinity sandwich assay that matches the author's former published assay results (Bruno et al., Microchem. J. 2014;115:32‐38) with subpicogram per milliliter sensitivity and good specificity. Other aspects such as capture and reporter aptamer interactions in the absence of BNP are illustrated and suggest means for potentially improving the existing assay by truncating the capture and reporter aptamers where they overlap to further decrease background signal levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI