A Novel Feature Selection based Ensemble Decision Tree Classification Model for Predicting Severity Level of COPD Disease

人工智能 特征选择 支持向量机 计算机科学 特征提取 模式识别(心理学) 决策树 朴素贝叶斯分类器 机器学习 慢性阻塞性肺病 分类器(UML) 集成学习 数据挖掘 医学 内科学
作者
Banda Srinivas Raja,Tummala Ranga Babu
出处
期刊:Biomedical and Pharmacology Journal [Oriental Scientific Publishing Company]
卷期号:12 (2): 875-886 被引量:5
标识
DOI:10.13005/bpj/1712
摘要

In the current era, research on automated knowledge extraction from Chronic Obstructive Pulmonary Disease (COPD) images is growing rapidly. COPD becomes a highly prevalent disease that impacts both patients and healthcare system. In various medical applications, image classification algorithms are used to predict the disease severity that can help in early diagnosis and decision-making process. Also, for large scale and complex medical images, machine learning techniques are more efficient,accuracy and reliable. Traditional image classification models such as Naïve Bayesian, Neural Networks, SVM, Regression models. etc are used to classify the image using the annotated ROI and image texture features. These models are used as a diagnostic tool in analyzing the COPD and disease prediction. These models are not applicable to classify the COPD using the disease severity level. Also, the accuracy and false positive rate of existing classification models is still far from satisfactory, due to lack of feature extraction and noise handling methods. Therefore, developing an effective classification model for predicting the severity of the COPD using features derived from CT images is a challenge task.In this paper, an ensemble feature selection based classification model was developed, using images features extracted from COPD patients’ CT scan images, to classify disease into “Severity level ” and “Normal level” categories, representing their riskof suffering a COPD disease. We applied five different classifier methods and three state-of-the-art ensemble classifiers to the COPD dataset and validated their performance in terms of F-measure and false positive rate. We found that proposed feature selection based ensemble classifier (F-measure 0.957) had the highest average accuracy for COPD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子李发布了新的文献求助10
1秒前
1秒前
1秒前
清欢发布了新的文献求助10
2秒前
乐乐应助zxw采纳,获得10
2秒前
jacob258发布了新的文献求助50
2秒前
qiqi完成签到,获得积分10
3秒前
3秒前
Owen应助杨小姐采纳,获得10
3秒前
希望天下0贩的0应助秋浱采纳,获得10
3秒前
4秒前
qian完成签到,获得积分10
5秒前
Gavin发布了新的文献求助10
5秒前
笨笨的蜡烛完成签到,获得积分10
5秒前
小鱼要变咸完成签到,获得积分10
5秒前
5秒前
快乐寄风完成签到,获得积分10
5秒前
5秒前
zly完成签到 ,获得积分10
6秒前
6秒前
苻颜发布了新的文献求助10
6秒前
6秒前
持刀的辣条应助ggjy采纳,获得10
6秒前
ming完成签到,获得积分20
7秒前
Ava应助建浩采纳,获得20
8秒前
星寒完成签到 ,获得积分10
8秒前
中杯西瓜冰完成签到,获得积分10
8秒前
8秒前
李健应助李不开你采纳,获得10
8秒前
Gustavo完成签到,获得积分10
8秒前
Ava应助謓言采纳,获得10
9秒前
Ava应助范先生采纳,获得10
10秒前
10秒前
大模型应助Abx采纳,获得10
10秒前
海君发布了新的文献求助10
10秒前
飘逸的台灯完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
Lucas应助派大星的海洋裤采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3684305
求助须知:如何正确求助?哪些是违规求助? 3235384
关于积分的说明 9820694
捐赠科研通 2947173
什么是DOI,文献DOI怎么找? 1616062
邀请新用户注册赠送积分活动 763405
科研通“疑难数据库(出版商)”最低求助积分说明 737809