A Novel Feature Selection based Ensemble Decision Tree Classification Model for Predicting Severity Level of COPD Disease

人工智能 特征选择 支持向量机 计算机科学 特征提取 模式识别(心理学) 决策树 朴素贝叶斯分类器 机器学习 慢性阻塞性肺病 分类器(UML) 集成学习 数据挖掘 医学 内科学
作者
Banda Srinivas Raja,Tummala Ranga Babu
出处
期刊:Biomedical and Pharmacology Journal [Oriental Scientific Publishing Company]
卷期号:12 (2): 875-886 被引量:5
标识
DOI:10.13005/bpj/1712
摘要

In the current era, research on automated knowledge extraction from Chronic Obstructive Pulmonary Disease (COPD) images is growing rapidly. COPD becomes a highly prevalent disease that impacts both patients and healthcare system. In various medical applications, image classification algorithms are used to predict the disease severity that can help in early diagnosis and decision-making process. Also, for large scale and complex medical images, machine learning techniques are more efficient,accuracy and reliable. Traditional image classification models such as Naïve Bayesian, Neural Networks, SVM, Regression models. etc are used to classify the image using the annotated ROI and image texture features. These models are used as a diagnostic tool in analyzing the COPD and disease prediction. These models are not applicable to classify the COPD using the disease severity level. Also, the accuracy and false positive rate of existing classification models is still far from satisfactory, due to lack of feature extraction and noise handling methods. Therefore, developing an effective classification model for predicting the severity of the COPD using features derived from CT images is a challenge task.In this paper, an ensemble feature selection based classification model was developed, using images features extracted from COPD patients’ CT scan images, to classify disease into “Severity level ” and “Normal level” categories, representing their riskof suffering a COPD disease. We applied five different classifier methods and three state-of-the-art ensemble classifiers to the COPD dataset and validated their performance in terms of F-measure and false positive rate. We found that proposed feature selection based ensemble classifier (F-measure 0.957) had the highest average accuracy for COPD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Parotodus发布了新的文献求助50
2秒前
QUU发布了新的文献求助20
2秒前
明若清完成签到,获得积分10
4秒前
4秒前
在水一方应助狄从灵采纳,获得10
5秒前
传奇3应助111采纳,获得10
5秒前
5秒前
5秒前
所所应助董卓小蛮腰采纳,获得10
5秒前
高工发布了新的文献求助10
5秒前
6秒前
小易完成签到,获得积分10
6秒前
2389937250完成签到,获得积分10
6秒前
6秒前
hao完成签到,获得积分10
7秒前
TRz发布了新的文献求助10
9秒前
CipherSage应助moxin采纳,获得10
9秒前
张高兴完成签到,获得积分10
9秒前
力口氵由发布了新的文献求助10
9秒前
9秒前
大脸小唐完成签到,获得积分20
9秒前
周子强发布了新的文献求助10
10秒前
大个应助shen_ting采纳,获得30
10秒前
10秒前
巴啦啦完成签到,获得积分10
11秒前
11秒前
xiaotutu完成签到,获得积分10
11秒前
爱橙色的阿七完成签到,获得积分10
12秒前
13秒前
hao发布了新的文献求助10
14秒前
乐正颦完成签到 ,获得积分10
14秒前
14秒前
赛赛发布了新的文献求助10
14秒前
巴啦啦发布了新的文献求助10
14秒前
rainhowk完成签到,获得积分10
15秒前
王wangWANG发布了新的文献求助10
15秒前
wang完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655