Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers

共聚物 玻璃化转变 羟基烷酸 材料科学 高分子科学 化学工程 高分子化学 聚合物 复合材料 工程类 地质学 古生物学 细菌
作者
Ghanshyam Pilania,Carl N. Iverson,Turab Lookman,Babetta L. Marrone
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (12): 5013-5025 被引量:103
标识
DOI:10.1021/acs.jcim.9b00807
摘要

Polyhydroxyalkanoate-based polymers—being ecofriendly, biosynthesizable, and economically viable and possessing a broad range of tunable properties—are currently being actively pursued as promising alternatives for petroleum-based plastics. The vast chemical complexity accessible within this class of polymers gives rise to challenges in the rational discovery of novel polymer chemistries for specific applications. The burgeoning field of polymer informatics addresses this challenge via providing tools and strategies for accelerated property prediction and materials design via surrogate machine-learning models built on reliable past data. In this contribution, we use glass transition temperature Tg as an example target property to demonstrate promise of the data-enabled route to accelerated learning of accurate structure–property mappings in PHA-based polymers. Our analysis uses a data set of experimentally measured Tg values, polymer molecular weights, and a polydispersity index for PHA-based homo- and copolymers that was carefully assembled from the literature. A fingerprinting scheme that captures key properties based on topology, shape, and charge/polarity of specific chemical units or motifs forming the polymer backbone was devised to numerically represent the polymers. A validated statistical learning model is then developed to allow for a mapping of the polymer fingerprints onto the property space in a physically meaningful and reliable manner. Once developed, the model can not only rapidly predict the property of new PHA polymers but also provide uncertainties underlying the predictions. The model is further combined with an evolutionary-algorithm-based search strategy to efficiently identify multicomponent polymer compositions with a prespecified Tg. While the present contribution is focused specifically on Tg, the surrogate model development approach put forward here is general and can, in principle, be extended to a range of other properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
经竺发布了新的文献求助10
刚刚
东山完成签到 ,获得积分10
1秒前
笑一笑完成签到,获得积分0
2秒前
2秒前
shawn发布了新的文献求助10
2秒前
gxp完成签到,获得积分20
2秒前
俊秀的战斗机完成签到 ,获得积分10
2秒前
2秒前
业余科研完成签到,获得积分10
3秒前
Akim应助刘YF采纳,获得10
3秒前
缥缈的芷卉完成签到,获得积分20
4秒前
磊2024完成签到,获得积分10
4秒前
wack关注了科研通微信公众号
5秒前
KAKA发布了新的文献求助20
5秒前
5秒前
Likej完成签到,获得积分10
5秒前
自有龙骧完成签到 ,获得积分10
5秒前
易大师完成签到,获得积分10
6秒前
好困应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
雪白问兰应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得30
6秒前
6秒前
Clover04应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
蛋蛋应助科研通管家采纳,获得20
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得20
7秒前
机会啊发布了新的文献求助10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
Clover04应助科研通管家采纳,获得10
7秒前
7秒前
在人间凑数完成签到 ,获得积分10
8秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158989
求助须知:如何正确求助?哪些是违规求助? 2810186
关于积分的说明 7886490
捐赠科研通 2469004
什么是DOI,文献DOI怎么找? 1314612
科研通“疑难数据库(出版商)”最低求助积分说明 630663
版权声明 602012