Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers

共聚物 玻璃化转变 羟基烷酸 材料科学 高分子科学 化学工程 高分子化学 聚合物 复合材料 工程类 地质学 细菌 古生物学
作者
Ghanshyam Pilania,Carl N. Iverson,Turab Lookman,Babetta L. Marrone
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (12): 5013-5025 被引量:103
标识
DOI:10.1021/acs.jcim.9b00807
摘要

Polyhydroxyalkanoate-based polymers—being ecofriendly, biosynthesizable, and economically viable and possessing a broad range of tunable properties—are currently being actively pursued as promising alternatives for petroleum-based plastics. The vast chemical complexity accessible within this class of polymers gives rise to challenges in the rational discovery of novel polymer chemistries for specific applications. The burgeoning field of polymer informatics addresses this challenge via providing tools and strategies for accelerated property prediction and materials design via surrogate machine-learning models built on reliable past data. In this contribution, we use glass transition temperature Tg as an example target property to demonstrate promise of the data-enabled route to accelerated learning of accurate structure–property mappings in PHA-based polymers. Our analysis uses a data set of experimentally measured Tg values, polymer molecular weights, and a polydispersity index for PHA-based homo- and copolymers that was carefully assembled from the literature. A fingerprinting scheme that captures key properties based on topology, shape, and charge/polarity of specific chemical units or motifs forming the polymer backbone was devised to numerically represent the polymers. A validated statistical learning model is then developed to allow for a mapping of the polymer fingerprints onto the property space in a physically meaningful and reliable manner. Once developed, the model can not only rapidly predict the property of new PHA polymers but also provide uncertainties underlying the predictions. The model is further combined with an evolutionary-algorithm-based search strategy to efficiently identify multicomponent polymer compositions with a prespecified Tg. While the present contribution is focused specifically on Tg, the surrogate model development approach put forward here is general and can, in principle, be extended to a range of other properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云扬发布了新的文献求助30
刚刚
agnessh完成签到,获得积分10
刚刚
楼藏鸟完成签到,获得积分10
刚刚
充电宝应助怡然的一斩采纳,获得10
1秒前
1秒前
完美世界应助哇哇的采纳,获得10
2秒前
打打应助正太低音炮采纳,获得10
2秒前
2秒前
ding应助niefengyun采纳,获得10
2秒前
daheeeee发布了新的文献求助10
2秒前
Zll完成签到,获得积分10
2秒前
2秒前
李爱国应助自觉柠檬采纳,获得10
3秒前
3秒前
曾志强应助甜心糖采纳,获得30
5秒前
CodeCraft应助舒适的石头采纳,获得10
5秒前
丘比特应助热情铭采纳,获得10
5秒前
5秒前
CipherSage应助喜悦的半芹采纳,获得10
5秒前
搞怪静曼完成签到,获得积分10
6秒前
6秒前
sole发布了新的文献求助10
6秒前
的风格完成签到,获得积分10
6秒前
6秒前
酷波er应助安静语山采纳,获得30
6秒前
7秒前
7秒前
黄bb应助杨硕采纳,获得10
7秒前
lynn发布了新的文献求助10
7秒前
zxl发布了新的文献求助10
8秒前
SciGPT应助青岚采纳,获得10
8秒前
W_G完成签到,获得积分10
8秒前
anlin发布了新的文献求助10
8秒前
研友_VZG7GZ应助刻苦谷兰采纳,获得10
9秒前
10秒前
123发布了新的文献求助10
10秒前
10秒前
王振军发布了新的文献求助10
11秒前
江心秋月发布了新的文献求助10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951401
求助须知:如何正确求助?哪些是违规求助? 3496844
关于积分的说明 11084706
捐赠科研通 3227245
什么是DOI,文献DOI怎么找? 1784364
邀请新用户注册赠送积分活动 868370
科研通“疑难数据库(出版商)”最低求助积分说明 801110