已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers

共聚物 玻璃化转变 羟基烷酸 材料科学 高分子科学 化学工程 高分子化学 聚合物 复合材料 工程类 地质学 古生物学 细菌
作者
Ghanshyam Pilania,Carl N. Iverson,Turab Lookman,Babetta L. Marrone
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (12): 5013-5025 被引量:103
标识
DOI:10.1021/acs.jcim.9b00807
摘要

Polyhydroxyalkanoate-based polymers—being ecofriendly, biosynthesizable, and economically viable and possessing a broad range of tunable properties—are currently being actively pursued as promising alternatives for petroleum-based plastics. The vast chemical complexity accessible within this class of polymers gives rise to challenges in the rational discovery of novel polymer chemistries for specific applications. The burgeoning field of polymer informatics addresses this challenge via providing tools and strategies for accelerated property prediction and materials design via surrogate machine-learning models built on reliable past data. In this contribution, we use glass transition temperature Tg as an example target property to demonstrate promise of the data-enabled route to accelerated learning of accurate structure–property mappings in PHA-based polymers. Our analysis uses a data set of experimentally measured Tg values, polymer molecular weights, and a polydispersity index for PHA-based homo- and copolymers that was carefully assembled from the literature. A fingerprinting scheme that captures key properties based on topology, shape, and charge/polarity of specific chemical units or motifs forming the polymer backbone was devised to numerically represent the polymers. A validated statistical learning model is then developed to allow for a mapping of the polymer fingerprints onto the property space in a physically meaningful and reliable manner. Once developed, the model can not only rapidly predict the property of new PHA polymers but also provide uncertainties underlying the predictions. The model is further combined with an evolutionary-algorithm-based search strategy to efficiently identify multicomponent polymer compositions with a prespecified Tg. While the present contribution is focused specifically on Tg, the surrogate model development approach put forward here is general and can, in principle, be extended to a range of other properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张张张完成签到,获得积分10
1秒前
上官若男应助禾火采纳,获得10
5秒前
FashionBoy应助高山七石采纳,获得10
6秒前
helly完成签到,获得积分10
6秒前
岳小龙完成签到 ,获得积分10
7秒前
科研通AI5应助wangxiaogua采纳,获得10
7秒前
小管发布了新的文献求助20
7秒前
zjy完成签到,获得积分10
11秒前
酆百招csa完成签到,获得积分10
11秒前
lm完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
学术废物完成签到 ,获得积分10
13秒前
15秒前
完美世界应助卢西奥采纳,获得10
15秒前
16秒前
禾火发布了新的文献求助10
21秒前
胖川发布了新的文献求助10
21秒前
szmsnail发布了新的文献求助10
21秒前
22秒前
化身孤岛的鲸完成签到,获得积分10
22秒前
zhangh65完成签到,获得积分10
22秒前
23秒前
vivid完成签到,获得积分10
24秒前
24秒前
Z小姐完成签到 ,获得积分10
26秒前
29秒前
卢西奥发布了新的文献求助10
30秒前
小管完成签到,获得积分10
31秒前
昏睡的蟠桃应助墨月白采纳,获得50
31秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
34秒前
所所应助小付采纳,获得10
35秒前
INGH发布了新的文献求助10
36秒前
fatdudu完成签到,获得积分10
36秒前
kay发布了新的文献求助10
36秒前
顾矜应助壮观采纳,获得10
37秒前
科烟生完成签到,获得积分10
37秒前
橱窗发布了新的文献求助10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666163
求助须知:如何正确求助?哪些是违规求助? 3225175
关于积分的说明 9761817
捐赠科研通 2935171
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759187
科研通“疑难数据库(出版商)”最低求助积分说明 735153