粒子群优化
特征选择
朴素贝叶斯分类器
集成学习
计算机科学
人工智能
机器学习
特征(语言学)
贝叶斯定理
随机森林
交叉验证
模式识别(心理学)
选择(遗传算法)
数据挖掘
算法
贝叶斯概率
支持向量机
哲学
语言学
作者
Archana Chaudhary,Ramesh Thakur,Savita Kolhe,Raj Kamal
标识
DOI:10.1016/j.compag.2020.105747
摘要
Ensemble methods give better performance compared to a single machine learning algorithm. Vote is one of the best ensembles. Vote merges predictions from Simple Logistics and the Naive Bayes algorithms in the present work. The paper presents a new ensemble approach – Ensemble Particle Swarm Optimization (EnsPSO). The EnsPSO approach is a combination of (i) Vote, (ii) Correlation based Feature(s) Selection (CFS) method, (iii) PSO algorithm and (iv) random sampling method. The EnsPSO shows better performance results than Vote. The EnsPSO shows higher classification accuracy (96%) as compared to Vote (84%). The performance enhancement of EnsPSO is also proved using ten-fold cross validation on 3 standard datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI