亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding and Learning Discriminant Features based on Multiattention 1DCNN for Wheelset Bearing Fault Diagnosis

可解释性 卷积神经网络 特征学习 人工智能 方位(导航) 断层(地质) 模式识别(心理学) 人工神经网络 机制(生物学) 深度学习 特征提取 特征(语言学) 计算机科学 代表(政治) 线性判别分析 机器学习 判别式 地质学 哲学 认识论 政治 地震学 法学 语言学 政治学
作者
Huan Wang,Zhiliang Liu,Dandan Peng,Yong Qin
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (9): 5735-5745 被引量:371
标识
DOI:10.1109/tii.2019.2955540
摘要

Recently, deep-learning-based fault diagnosis methods have been widely studied for rolling bearings. However, these neural networks are lack of interpretability for fault diagnosis tasks. That is, how to understand and learn discriminant fault features from complex monitoring signals remains a great challenge. Considering this challenge, this article explores the use of the attention mechanism in fault diagnosis networks and designs attention module by fully considering characteristics of rolling bearing faults to enhance fault-related features and to ignore irrelevant features. Powered by the proposed attention mechanism, a multiattention one-dimensional convolutional neural network (MA1DCNN) is further proposed to diagnose wheelset bearing faults. The MA1DCNN can adaptively recalibrate features of each layer and can enhance the feature learning of fault impulses. Experimental results on the wheelset bearing dataset show that the proposed multiattention mechanism can significantly improve the discriminant feature representation, thus the MA1DCNN outperforms eight state-of-the-arts networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫抓板发布了新的文献求助10
12秒前
wanci应助小飞采纳,获得10
12秒前
13秒前
13秒前
jane123发布了新的文献求助10
17秒前
jjc发布了新的文献求助10
18秒前
22秒前
小飞发布了新的文献求助10
27秒前
47秒前
康宁完成签到,获得积分10
1分钟前
酷波er应助我啊采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Tirachen发布了新的文献求助10
1分钟前
CipherSage应助可爱花瓣采纳,获得10
1分钟前
我啊发布了新的文献求助10
1分钟前
Tirachen完成签到,获得积分10
1分钟前
1分钟前
大模型应助我啊采纳,获得10
1分钟前
可爱花瓣发布了新的文献求助10
1分钟前
Yuki完成签到 ,获得积分10
2分钟前
浮游应助ABBCCC采纳,获得10
2分钟前
2分钟前
YifanWang应助科研通管家采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得30
3分钟前
ABBCCC发布了新的文献求助10
3分钟前
所所应助宋芽芽采纳,获得100
3分钟前
3分钟前
ZXneuro完成签到,获得积分10
3分钟前
葱葱花卷完成签到 ,获得积分10
4分钟前
4分钟前
我啊完成签到,获得积分10
4分钟前
HMYX完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426582
求助须知:如何正确求助?哪些是违规求助? 4540281
关于积分的说明 14171923
捐赠科研通 4458061
什么是DOI,文献DOI怎么找? 2444804
邀请新用户注册赠送积分活动 1435870
关于科研通互助平台的介绍 1413309