材料科学
电导率
电解质
快离子导体
四方晶系
离子电导率
烧结
硫化物
钠
钨
电池(电)
氧化物
离子
化学工程
无机化学
相(物质)
冶金
化学
电极
物理化学
热力学
有机化学
功率(物理)
工程类
物理
作者
Akitoshi Hayashi,Naoki Masuzawa,So Yubuchi,Fumika Tsuji,Chie Hotehama,Atsushi Sakuda,Masahiro Tatsumisago
标识
DOI:10.1038/s41467-019-13178-2
摘要
Abstract Solid electrolytes are key materials to enable solid-state rechargeable batteries, a promising technology that could address the safety and energy density issues. Here, we report a sulfide sodium-ion conductor, Na 2.88 Sb 0.88 W 0.12 S 4 , with conductivity superior to that of the benchmark electrolyte, Li 10 GeP 2 S 12 . Partial substitution of antimony in Na 3 SbS 4 with tungsten introduces sodium vacancies and tetragonal to cubic phase transition, giving rise to the highest room-temperature conductivity of 32 mS cm −1 for a sintered body, Na 2.88 Sb 0.88 W 0.12 S 4 . Moreover, this sulfide possesses additional advantages including stability against humid atmosphere and densification at much lower sintering temperatures than those (>1000 °C) of typical oxide sodium-ion conductors. The discovery of the fast sodium-ion conductors boosts the ongoing research for solid-state rechargeable battery technology with high safety, cost-effectiveness, large energy and power densities.
科研通智能强力驱动
Strongly Powered by AbleSci AI