亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study

医学 癌症 内窥镜检查 内科学 放射科 结直肠癌 胃肠道癌
作者
Hui Luo,Guoliang Xu,Chaofeng Li,Longjun He,Linna Luo,Zixian Wang,Bingzhong Jing,Yishu Deng,Ying Jin,Li Yin,Bin Li,Wencheng Tan,Caisheng He,Sharvesh Raj Seeruttun,Qiubao Wu,Jun Huang,De-wang Huang,Bin Chen,Shao-bin Lin,Qin-ming Chen,Chu-ming Yuan,Hai-xin Chen,Heng-Ying Pu,Feng Zhou,Yun He,Rui‐Hua Xu
出处
期刊:Lancet Oncology [Elsevier]
卷期号:20 (12): 1645-1654 被引量:307
标识
DOI:10.1016/s1470-2045(19)30637-0
摘要

Summary

Background

Upper gastrointestinal cancers (including oesophageal cancer and gastric cancer) are the most common cancers worldwide. Artificial intelligence platforms using deep learning algorithms have made remarkable progress in medical imaging but their application in upper gastrointestinal cancers has been limited. We aimed to develop and validate the Gastrointestinal Artificial Intelligence Diagnostic System (GRAIDS) for the diagnosis of upper gastrointestinal cancers through analysis of imaging data from clinical endoscopies.

Methods

This multicentre, case-control, diagnostic study was done in six hospitals of different tiers (ie, municipal, provincial, and national) in China. The images of consecutive participants, aged 18 years or older, who had not had a previous endoscopy were retrieved from all participating hospitals. All patients with upper gastrointestinal cancer lesions (including oesophageal cancer and gastric cancer) that were histologically proven malignancies were eligible for this study. Only images with standard white light were deemed eligible. The images from Sun Yat-sen University Cancer Center were randomly assigned (8:1:1) to the training and intrinsic verification datasets for developing GRAIDS, and the internal validation dataset for evaluating the performance of GRAIDS. Its diagnostic performance was evaluated using an internal and prospective validation set from Sun Yat-sen University Cancer Center (a national hospital) and additional external validation sets from five primary care hospitals. The performance of GRAIDS was also compared with endoscopists with three degrees of expertise: expert, competent, and trainee. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of GRAIDS and endoscopists for the identification of cancerous lesions were evaluated by calculating the 95% CIs using the Clopper-Pearson method.

Findings

1 036 496 endoscopy images from 84 424 individuals were used to develop and test GRAIDS. The diagnostic accuracy in identifying upper gastrointestinal cancers was 0·955 (95% CI 0·952–0·957) in the internal validation set, 0·927 (0·925–0·929) in the prospective set, and ranged from 0·915 (0·913–0·917) to 0·977 (0·977–0·978) in the five external validation sets. GRAIDS achieved diagnostic sensitivity similar to that of the expert endoscopist (0·942 [95% CI 0·924–0·957] vs 0·945 [0·927–0·959]; p=0·692) and superior sensitivity compared with competent (0·858 [0·832–0·880], p<0·0001) and trainee (0·722 [0·691–0·752], p<0·0001) endoscopists. The positive predictive value was 0·814 (95% CI 0·788–0·838) for GRAIDS, 0·932 (0·913–0·948) for the expert endoscopist, 0·974 (0·960–0·984) for the competent endoscopist, and 0·824 (0·795–0·850) for the trainee endoscopist. The negative predictive value was 0·978 (95% CI 0·971–0·984) for GRAIDS, 0·980 (0·974–0·985) for the expert endoscopist, 0·951 (0·942–0·959) for the competent endoscopist, and 0·904 (0·893–0·916) for the trainee endoscopist.

Interpretation

GRAIDS achieved high diagnostic accuracy in detecting upper gastrointestinal cancers, with sensitivity similar to that of expert endoscopists and was superior to that of non-expert endoscopists. This system could assist community-based hospitals in improving their effectiveness in upper gastrointestinal cancer diagnoses.

Funding

The National Key R&D Program of China, the Natural Science Foundation of Guangdong Province, the Science and Technology Program of Guangdong, the Science and Technology Program of Guangzhou, and the Fundamental Research Funds for the Central Universities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
28秒前
刻苦的长颈鹿完成签到,获得积分10
38秒前
日拱一卒的蕊完成签到,获得积分20
47秒前
完美世界应助交钱上班采纳,获得10
49秒前
寻道图强应助maher采纳,获得30
1分钟前
1分钟前
金灶沐完成签到 ,获得积分10
1分钟前
江望雪完成签到 ,获得积分10
2分钟前
2分钟前
RED发布了新的文献求助10
2分钟前
李爱国应助Jeriu采纳,获得10
2分钟前
2分钟前
Jeriu发布了新的文献求助10
2分钟前
桐桐应助希勤采纳,获得10
2分钟前
Jeriu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
交钱上班发布了新的文献求助10
3分钟前
3分钟前
交钱上班完成签到,获得积分10
3分钟前
TWT发布了新的文献求助10
3分钟前
Fonseca完成签到 ,获得积分10
3分钟前
平日裤子完成签到 ,获得积分10
3分钟前
李健应助一剑白采纳,获得10
3分钟前
科研通AI2S应助Fonseca采纳,获得10
3分钟前
zhl完成签到,获得积分10
4分钟前
TWT完成签到,获得积分10
4分钟前
4分钟前
蔚蓝晴空发布了新的文献求助10
4分钟前
蔚蓝晴空完成签到,获得积分10
5分钟前
自信的傲晴完成签到,获得积分10
5分钟前
Noob_saibot完成签到,获得积分10
5分钟前
Noob_saibot发布了新的文献求助30
5分钟前
衣蝉完成签到 ,获得积分10
6分钟前
脑洞疼应助日拱一卒的蕊采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
Frank完成签到,获得积分10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133938
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768641
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297291
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791