Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High‐Rate and Low‐Temperature Zinc‐Ion Batteries

材料科学 电化学 兴奋剂 阴极 氧化钒 电池(电) 电流密度 电极 无机化学 电化学动力学 氧化物 化学工程 纳米技术 离子 光电子学 物理化学 冶金 化学 功率(物理) 工程类 物理 量子力学
作者
Hongbo Geng,Min Cheng,Bo Wang,Yang Yang,Yufei Zhang,Cheng Chao Li
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:30 (6) 被引量:422
标识
DOI:10.1002/adfm.201907684
摘要

Abstract Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn 2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn 2+ ‐doped layered vanadium oxide (Mn 0.15 V 2 O 5 · n H 2 O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn 0.15 V 2 O 5 · n H 2 O electrode shows a high specific capacity of 367 mAh g −1 at a current density of 0.1 A g −1 as well as excellent retentive capacities of 153 and 122 mAh g −1 after 8000 cycles at high current densities up to 10 and 20 A g −1 , respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g −1 can be achieved at a current density of 2.0 A g −1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn 2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助75986686采纳,获得10
刚刚
1秒前
领导范儿应助WGS采纳,获得10
1秒前
1秒前
Jian完成签到 ,获得积分10
2秒前
hh完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助Mojito采纳,获得10
4秒前
4秒前
5秒前
多情山蝶发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
wsy完成签到,获得积分10
7秒前
今夜明珠色应助Liu采纳,获得30
7秒前
乐尤琉完成签到,获得积分10
8秒前
8秒前
小蘑菇应助党阳阳采纳,获得10
8秒前
9秒前
9秒前
9秒前
史克珍香完成签到 ,获得积分10
10秒前
AIDA完成签到,获得积分10
10秒前
斯文败类应助Guzaiya采纳,获得10
11秒前
gavin完成签到 ,获得积分10
12秒前
飞快的从彤完成签到 ,获得积分20
12秒前
茶米发布了新的文献求助10
13秒前
脱羰甲酸发布了新的文献求助10
14秒前
hhdegf发布了新的文献求助10
16秒前
16秒前
科目三应助ldp采纳,获得10
17秒前
研友_8o5V2n完成签到,获得积分10
18秒前
溜溜梅完成签到,获得积分10
18秒前
花生小铺主人完成签到,获得积分10
19秒前
斯文败类应助llll采纳,获得10
19秒前
19秒前
19秒前
Gumayusi发布了新的文献求助10
20秒前
wxy发布了新的文献求助10
20秒前
Carmen完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594