Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series

均方误差 平均绝对百分比误差 随机森林 Boosting(机器学习) 统计 梯度升压 集成学习 数学 人工神经网络 威尔科克森符号秩检验 试验装置 背景(考古学) 机器学习 多层感知器 支持向量机 人工智能 计算机科学 古生物学 生物 曼惠特尼U检验
作者
Matheus Henrique Dal Molin Ribeiro,Leandro dos Santos Coelho
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:86: 105837-105837 被引量:464
标识
DOI:10.1016/j.asoc.2019.105837
摘要

The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act together to forecast a response variable with lower error. Faced with this, the general contribution of this work is to explore the predictive capability of regression ensembles by comparing ensembles among themselves, as well as with approaches that consider a single model (reference models) in the agribusiness area to forecast prices one month ahead. In this aspect, monthly time series referring to the price paid to producers in the state of Parana, Brazil for a 60 kg bag of soybean (case study 1) and wheat (case study 2) are used. The ensembles bagging (random forests — RF), boosting (gradient boosting machine — GBM and extreme gradient boosting machine — XGB), and stacking (STACK) are adopted. The support vector machine for regression (SVR), multilayer perceptron neural network (MLP) and K-nearest neighbors (KNN) are adopted as reference models. Performance measures such as mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) are used for models comparison. Friedman and Wilcoxon signed rank tests are applied to evaluate the models’ absolute percentage errors (APE). From the comparison of test set results, MAPE lower than 1% is observed for the best ensemble approaches. In this context, the XGB/STACK (Least Absolute Shrinkage and Selection Operator-KNN-XGB-SVR) and RF models showed better performance for short-term forecasting tasks for case studies 1 and 2, respectively. Better APE (statistically smaller) is observed for XGB/STACK and RF in relation to reference models. Besides that, approaches based on boosting are consistent, providing good results in both case studies. Alongside, a rank according to the performances is: XGB, GBM, RF, STACK, MLP, SVR and KNN. It can be concluded that the ensemble approach presents statistically significant gains, reducing prediction errors for the price series studied. The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqq发布了新的文献求助10
刚刚
不知完成签到 ,获得积分10
1秒前
ruofanfan发布了新的文献求助10
2秒前
sifLiu完成签到,获得积分10
2秒前
www完成签到,获得积分10
2秒前
青菜发布了新的文献求助20
3秒前
3秒前
玲珑完成签到 ,获得积分20
4秒前
barn完成签到,获得积分10
4秒前
11发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助150
4秒前
Ava应助wawu采纳,获得10
5秒前
6秒前
6秒前
6秒前
赘婿应助冷酷莫言采纳,获得10
7秒前
Phoenix完成签到 ,获得积分10
11秒前
damai发布了新的文献求助10
11秒前
dushicheng发布了新的文献求助10
11秒前
不以完成签到,获得积分10
11秒前
12秒前
义气萝卜头完成签到 ,获得积分10
12秒前
syx发布了新的文献求助10
13秒前
俊秀的幻桃完成签到,获得积分10
13秒前
iNk应助joyi采纳,获得20
16秒前
iNk应助joyi采纳,获得20
16秒前
chrysophoron发布了新的文献求助10
16秒前
苏苏苏发布了新的文献求助10
17秒前
鸽子完成签到,获得积分20
17秒前
小迷鹿完成签到,获得积分10
18秒前
科研通AI5应助Jenkin采纳,获得10
19秒前
DongDong完成签到 ,获得积分10
19秒前
东风压倒西风完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助150
22秒前
yanna完成签到,获得积分10
24秒前
damai完成签到,获得积分10
25秒前
DongDong关注了科研通微信公众号
25秒前
26秒前
28秒前
麦麦完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5056961
求助须知:如何正确求助?哪些是违规求助? 4282417
关于积分的说明 13345601
捐赠科研通 4099349
什么是DOI,文献DOI怎么找? 2244241
邀请新用户注册赠送积分活动 1250276
关于科研通互助平台的介绍 1180760