Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series

均方误差 平均绝对百分比误差 随机森林 Boosting(机器学习) 梯度升压 统计 集成学习 数学 人工神经网络 试验装置 威尔科克森符号秩检验 背景(考古学) 多层感知器 机器学习 支持向量机 回归 人工智能 计算机科学 生物 古生物学 曼惠特尼U检验
作者
Matheus Henrique Dal Molin Ribeiro,Leandro dos Santos Coelho
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:86: 105837-105837 被引量:263
标识
DOI:10.1016/j.asoc.2019.105837
摘要

The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act together to forecast a response variable with lower error. Faced with this, the general contribution of this work is to explore the predictive capability of regression ensembles by comparing ensembles among themselves, as well as with approaches that consider a single model (reference models) in the agribusiness area to forecast prices one month ahead. In this aspect, monthly time series referring to the price paid to producers in the state of Parana, Brazil for a 60 kg bag of soybean (case study 1) and wheat (case study 2) are used. The ensembles bagging (random forests — RF), boosting (gradient boosting machine — GBM and extreme gradient boosting machine — XGB), and stacking (STACK) are adopted. The support vector machine for regression (SVR), multilayer perceptron neural network (MLP) and K-nearest neighbors (KNN) are adopted as reference models. Performance measures such as mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) are used for models comparison. Friedman and Wilcoxon signed rank tests are applied to evaluate the models’ absolute percentage errors (APE). From the comparison of test set results, MAPE lower than 1% is observed for the best ensemble approaches. In this context, the XGB/STACK (Least Absolute Shrinkage and Selection Operator-KNN-XGB-SVR) and RF models showed better performance for short-term forecasting tasks for case studies 1 and 2, respectively. Better APE (statistically smaller) is observed for XGB/STACK and RF in relation to reference models. Besides that, approaches based on boosting are consistent, providing good results in both case studies. Alongside, a rank according to the performances is: XGB, GBM, RF, STACK, MLP, SVR and KNN. It can be concluded that the ensemble approach presents statistically significant gains, reducing prediction errors for the price series studied. The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简.....完成签到,获得积分10
1秒前
刘闹闹完成签到 ,获得积分10
2秒前
zzzyyyuuu完成签到 ,获得积分10
2秒前
剑履上殿完成签到,获得积分10
2秒前
洛必达完成签到,获得积分10
3秒前
深山何处钟声鸣完成签到 ,获得积分0
3秒前
coco完成签到,获得积分10
3秒前
4秒前
星海完成签到,获得积分10
4秒前
5秒前
海龟完成签到 ,获得积分10
6秒前
jjjjjjjj完成签到,获得积分0
6秒前
李文思完成签到,获得积分10
6秒前
sevten完成签到,获得积分10
7秒前
7秒前
7秒前
Leohp完成签到,获得积分10
8秒前
8秒前
070329发布了新的文献求助10
9秒前
AX丶完成签到,获得积分10
9秒前
Boss东发布了新的文献求助10
9秒前
青柠完成签到,获得积分10
10秒前
111完成签到,获得积分10
10秒前
英俊的铭应助Yjj采纳,获得10
10秒前
hujin应助小小牛采纳,获得10
10秒前
唐画完成签到,获得积分10
10秒前
笑笑丶不爱笑完成签到,获得积分10
11秒前
11秒前
宋祝福发布了新的文献求助10
11秒前
xpd发布了新的文献求助30
12秒前
旋疯小子发布了新的文献求助10
12秒前
12秒前
ttlash完成签到,获得积分10
13秒前
不安的斑马完成签到,获得积分10
13秒前
深情海秋完成签到,获得积分10
13秒前
iShine发布了新的文献求助10
14秒前
14秒前
风景的谷建芬完成签到,获得积分10
14秒前
siyuyu完成签到,获得积分10
15秒前
小蘑菇完成签到,获得积分10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443