Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series

Boosting(机器学习) 期限(时间) 农业综合企业 系列(地层学) 集成学习 堆积 时间序列 机器学习 人工智能 计算机科学 数据挖掘 模式识别(心理学) 农业 核磁共振 量子力学 生态学 物理 古生物学 生物
作者
Matheus Henrique Dal Molin Ribeiro,Leandro dos Santos Coelho
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:86: 105837-105837 被引量:414
标识
DOI:10.1016/j.asoc.2019.105837
摘要

The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act together to forecast a response variable with lower error. Faced with this, the general contribution of this work is to explore the predictive capability of regression ensembles by comparing ensembles among themselves, as well as with approaches that consider a single model (reference models) in the agribusiness area to forecast prices one month ahead. In this aspect, monthly time series referring to the price paid to producers in the state of Parana, Brazil for a 60 kg bag of soybean (case study 1) and wheat (case study 2) are used. The ensembles bagging (random forests — RF), boosting (gradient boosting machine — GBM and extreme gradient boosting machine — XGB), and stacking (STACK) are adopted. The support vector machine for regression (SVR), multilayer perceptron neural network (MLP) and K-nearest neighbors (KNN) are adopted as reference models. Performance measures such as mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) are used for models comparison. Friedman and Wilcoxon signed rank tests are applied to evaluate the models’ absolute percentage errors (APE). From the comparison of test set results, MAPE lower than 1% is observed for the best ensemble approaches. In this context, the XGB/STACK (Least Absolute Shrinkage and Selection Operator-KNN-XGB-SVR) and RF models showed better performance for short-term forecasting tasks for case studies 1 and 2, respectively. Better APE (statistically smaller) is observed for XGB/STACK and RF in relation to reference models. Besides that, approaches based on boosting are consistent, providing good results in both case studies. Alongside, a rank according to the performances is: XGB, GBM, RF, STACK, MLP, SVR and KNN. It can be concluded that the ensemble approach presents statistically significant gains, reducing prediction errors for the price series studied. The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助王359采纳,获得10
1秒前
WHH发布了新的文献求助10
1秒前
2秒前
LEI发布了新的文献求助10
3秒前
3秒前
余小琴完成签到 ,获得积分10
3秒前
隐形曼青应助欣喜的念芹采纳,获得10
5秒前
5秒前
6秒前
酷炫迎波完成签到,获得积分10
6秒前
7秒前
yly123完成签到,获得积分10
7秒前
WHH完成签到,获得积分10
7秒前
8秒前
10秒前
幻烨烨完成签到,获得积分10
10秒前
光亮的莺发布了新的文献求助10
11秒前
大脑袋应助zzf采纳,获得30
12秒前
12秒前
13秒前
zhang发布了新的文献求助10
13秒前
13秒前
欣喜的念芹完成签到,获得积分20
14秒前
玉婷完成签到,获得积分10
16秒前
神勇友灵完成签到,获得积分10
16秒前
CHyaa完成签到,获得积分10
16秒前
英姑应助摆烂研究牲采纳,获得10
16秒前
16秒前
16秒前
18秒前
jiao发布了新的文献求助10
19秒前
大气从安完成签到,获得积分10
19秒前
研友_VZG7GZ应助gengsumin采纳,获得10
20秒前
20秒前
孤独的狼发布了新的文献求助10
20秒前
xixi发布了新的文献求助30
20秒前
yly123发布了新的文献求助10
21秒前
21秒前
丸子_2025000完成签到,获得积分10
21秒前
Driscoll完成签到 ,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296