Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series

均方误差 平均绝对百分比误差 随机森林 Boosting(机器学习) 统计 梯度升压 集成学习 数学 人工神经网络 威尔科克森符号秩检验 试验装置 背景(考古学) 机器学习 多层感知器 支持向量机 人工智能 计算机科学 古生物学 生物 曼惠特尼U检验
作者
Matheus Henrique Dal Molin Ribeiro,Leandro dos Santos Coelho
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:86: 105837-105837 被引量:464
标识
DOI:10.1016/j.asoc.2019.105837
摘要

The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act together to forecast a response variable with lower error. Faced with this, the general contribution of this work is to explore the predictive capability of regression ensembles by comparing ensembles among themselves, as well as with approaches that consider a single model (reference models) in the agribusiness area to forecast prices one month ahead. In this aspect, monthly time series referring to the price paid to producers in the state of Parana, Brazil for a 60 kg bag of soybean (case study 1) and wheat (case study 2) are used. The ensembles bagging (random forests — RF), boosting (gradient boosting machine — GBM and extreme gradient boosting machine — XGB), and stacking (STACK) are adopted. The support vector machine for regression (SVR), multilayer perceptron neural network (MLP) and K-nearest neighbors (KNN) are adopted as reference models. Performance measures such as mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) are used for models comparison. Friedman and Wilcoxon signed rank tests are applied to evaluate the models’ absolute percentage errors (APE). From the comparison of test set results, MAPE lower than 1% is observed for the best ensemble approaches. In this context, the XGB/STACK (Least Absolute Shrinkage and Selection Operator-KNN-XGB-SVR) and RF models showed better performance for short-term forecasting tasks for case studies 1 and 2, respectively. Better APE (statistically smaller) is observed for XGB/STACK and RF in relation to reference models. Besides that, approaches based on boosting are consistent, providing good results in both case studies. Alongside, a rank according to the performances is: XGB, GBM, RF, STACK, MLP, SVR and KNN. It can be concluded that the ensemble approach presents statistically significant gains, reducing prediction errors for the price series studied. The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助蒸盐粥采纳,获得10
刚刚
刚刚
小伙伴完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
1秒前
zz发布了新的文献求助10
1秒前
11发布了新的文献求助10
2秒前
俭朴完成签到,获得积分20
2秒前
wwe发布了新的文献求助10
3秒前
万能图书馆应助hhj采纳,获得10
3秒前
3秒前
4秒前
刘丽完成签到,获得积分20
5秒前
5秒前
hami发布了新的文献求助10
5秒前
要减肥的夜蕾完成签到,获得积分20
5秒前
MLL关闭了MLL文献求助
5秒前
FiFi完成签到 ,获得积分10
6秒前
mei发布了新的文献求助10
6秒前
香蕉觅云应助zkc采纳,获得10
7秒前
7秒前
8秒前
蔺山河完成签到,获得积分10
8秒前
樱铃完成签到,获得积分10
8秒前
8秒前
人小鸭儿大完成签到 ,获得积分10
8秒前
8秒前
9秒前
fangtong发布了新的文献求助10
9秒前
慈祥的梦露完成签到,获得积分10
9秒前
Akim应助chai采纳,获得10
9秒前
科研鬼才完成签到,获得积分20
9秒前
10秒前
珃苒冉`发布了新的文献求助10
11秒前
11秒前
12秒前
junheng740发布了新的文献求助10
12秒前
大树发布了新的文献求助10
12秒前
老艺人发布了新的文献求助10
13秒前
啊喔完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003