Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion

计算机科学 人工智能 深度学习 卷积神经网络 断层(地质) 特征提取 过程(计算) 人工神经网络 模式识别(心理学) 感知器 特征(语言学) 机器学习 操作系统 地震学 哲学 地质学 语言学
作者
Nan Wang,Fan Yang,Ridong Zhang,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (7): 7121-7135 被引量:61
标识
DOI:10.1109/tcyb.2020.3038832
摘要

Deep learning technology has been widely used in fault diagnosis for chemical processes. However, most deep learning technologies currently adopted only use a single network stack or a certain network stack with multilayer perceptron (MLP) behind it. Compared with traditional fault diagnosis technologies, this method has made progress in both the diagnosis accuracy and speed, but due to the limited performance of a single network, the accuracy or speed cannot meet the requirements to the greatest extent. In order to overcome such problems, this article proposes a fault diagnosis method using deep learning multimodel fusion. Different from previous deep learning diagnosis methods, this method uses long short-term memory (LSTM) and convolutional neural network (CNN) to extract features separately. The extracted features are then fused and MLP is taken as the input for further feature compression and extraction, and finally the diagnosis results will be obtained. LSTM has long-term memory capabilities, the extracted features have temporal characteristics, and CNNs have a good effect on the extraction of spatial features. The proposed method integrates these two aspects for diagnosis such that the features finally extracted by the network have both spatial and temporal characteristics, thereby improving the network's diagnostic performance. Finally, a TE chemical process and an industrial coking furnace process are taken for simulation testing. It is proved that the performance of this method is superior to existing deep learning fault diagnosis methods with simple sequential stacking for unilateral feature extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
魏凡之完成签到 ,获得积分10
3秒前
6秒前
萧水白应助emmm采纳,获得10
6秒前
orixero应助rena采纳,获得10
7秒前
Ivy完成签到,获得积分20
7秒前
马不停蹄发布了新的文献求助10
8秒前
9秒前
10秒前
坦率的刺猬完成签到,获得积分10
10秒前
12秒前
顾矜应助落寞臻采纳,获得10
15秒前
bbdd2334发布了新的文献求助10
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
dinghaifeng应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
温冰雪应助科研通管家采纳,获得10
17秒前
17秒前
22秒前
23秒前
23秒前
卤蛋长不高完成签到 ,获得积分10
24秒前
26秒前
26秒前
27秒前
30秒前
乐乐发布了新的文献求助10
32秒前
如意真发布了新的文献求助10
32秒前
blueboom完成签到 ,获得积分10
34秒前
彭于晏应助kaisen采纳,获得10
34秒前
科目三应助钟沐晨采纳,获得10
36秒前
37秒前
淡然冬灵发布了新的文献求助10
37秒前
37秒前
木林森林木完成签到 ,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541