Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion

计算机科学 人工智能 深度学习 卷积神经网络 断层(地质) 特征提取 过程(计算) 人工神经网络 模式识别(心理学) 感知器 特征(语言学) 机器学习 语言学 哲学 地震学 地质学 操作系统
作者
Nan Wang,Fan Yang,Ridong Zhang,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (7): 7121-7135 被引量:61
标识
DOI:10.1109/tcyb.2020.3038832
摘要

Deep learning technology has been widely used in fault diagnosis for chemical processes. However, most deep learning technologies currently adopted only use a single network stack or a certain network stack with multilayer perceptron (MLP) behind it. Compared with traditional fault diagnosis technologies, this method has made progress in both the diagnosis accuracy and speed, but due to the limited performance of a single network, the accuracy or speed cannot meet the requirements to the greatest extent. In order to overcome such problems, this article proposes a fault diagnosis method using deep learning multimodel fusion. Different from previous deep learning diagnosis methods, this method uses long short-term memory (LSTM) and convolutional neural network (CNN) to extract features separately. The extracted features are then fused and MLP is taken as the input for further feature compression and extraction, and finally the diagnosis results will be obtained. LSTM has long-term memory capabilities, the extracted features have temporal characteristics, and CNNs have a good effect on the extraction of spatial features. The proposed method integrates these two aspects for diagnosis such that the features finally extracted by the network have both spatial and temporal characteristics, thereby improving the network's diagnostic performance. Finally, a TE chemical process and an industrial coking furnace process are taken for simulation testing. It is proved that the performance of this method is superior to existing deep learning fault diagnosis methods with simple sequential stacking for unilateral feature extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
海绵baobao完成签到,获得积分10
1秒前
1秒前
2秒前
脑洞疼应助勤恳的雪卉采纳,获得10
3秒前
ding应助韩明轩采纳,获得10
4秒前
4秒前
刘培恒完成签到,获得积分10
4秒前
嘿嘿发布了新的文献求助10
5秒前
晨晓完成签到,获得积分10
5秒前
高高的依白完成签到 ,获得积分10
7秒前
Otorhino完成签到 ,获得积分10
7秒前
闲云野鹤完成签到,获得积分10
7秒前
成就煎蛋关注了科研通微信公众号
8秒前
yhm7426发布了新的文献求助20
8秒前
8秒前
hzy6688应助li12345852456采纳,获得10
9秒前
可爱的函函应助shenerqing采纳,获得10
9秒前
9秒前
9秒前
又困完成签到 ,获得积分10
9秒前
10秒前
10秒前
zby完成签到,获得积分10
12秒前
12秒前
浮游应助liang2508采纳,获得10
14秒前
h9777发布了新的文献求助30
14秒前
ting发布了新的文献求助30
14秒前
zzz完成签到,获得积分10
15秒前
16秒前
16秒前
waye131发布了新的文献求助10
16秒前
17秒前
张7发布了新的文献求助10
18秒前
19秒前
hzy6688应助酷波zai采纳,获得10
19秒前
19秒前
19秒前
嘿嘿发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353776
求助须知:如何正确求助?哪些是违规求助? 4486351
关于积分的说明 13966218
捐赠科研通 4386702
什么是DOI,文献DOI怎么找? 2410022
邀请新用户注册赠送积分活动 1402355
关于科研通互助平台的介绍 1376132