Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion

计算机科学 人工智能 深度学习 卷积神经网络 断层(地质) 特征提取 过程(计算) 人工神经网络 模式识别(心理学) 感知器 特征(语言学) 机器学习 语言学 哲学 地震学 地质学 操作系统
作者
Nan Wang,Fan Yang,Ridong Zhang,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (7): 7121-7135 被引量:61
标识
DOI:10.1109/tcyb.2020.3038832
摘要

Deep learning technology has been widely used in fault diagnosis for chemical processes. However, most deep learning technologies currently adopted only use a single network stack or a certain network stack with multilayer perceptron (MLP) behind it. Compared with traditional fault diagnosis technologies, this method has made progress in both the diagnosis accuracy and speed, but due to the limited performance of a single network, the accuracy or speed cannot meet the requirements to the greatest extent. In order to overcome such problems, this article proposes a fault diagnosis method using deep learning multimodel fusion. Different from previous deep learning diagnosis methods, this method uses long short-term memory (LSTM) and convolutional neural network (CNN) to extract features separately. The extracted features are then fused and MLP is taken as the input for further feature compression and extraction, and finally the diagnosis results will be obtained. LSTM has long-term memory capabilities, the extracted features have temporal characteristics, and CNNs have a good effect on the extraction of spatial features. The proposed method integrates these two aspects for diagnosis such that the features finally extracted by the network have both spatial and temporal characteristics, thereby improving the network's diagnostic performance. Finally, a TE chemical process and an industrial coking furnace process are taken for simulation testing. It is proved that the performance of this method is superior to existing deep learning fault diagnosis methods with simple sequential stacking for unilateral feature extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵唯皓完成签到,获得积分10
刚刚
bensenback发布了新的文献求助10
刚刚
停騮_ 发布了新的文献求助10
刚刚
1秒前
调皮正豪完成签到,获得积分10
1秒前
liangjinan完成签到,获得积分10
1秒前
2秒前
3秒前
wjh完成签到,获得积分10
3秒前
打打应助xingxingzy2006采纳,获得10
4秒前
4秒前
Eternal芾夏完成签到,获得积分10
5秒前
hawz发布了新的文献求助10
5秒前
背后枕头完成签到 ,获得积分10
6秒前
喜悦的威完成签到,获得积分10
6秒前
7秒前
研友_VZG7GZ应助菲比采纳,获得10
8秒前
量子星尘发布了新的文献求助50
8秒前
大模型应助尤君兰采纳,获得10
9秒前
9秒前
欢呼尔烟发布了新的文献求助10
10秒前
Bethune完成签到,获得积分10
10秒前
zk092988完成签到,获得积分10
11秒前
停騮_ 完成签到,获得积分10
13秒前
慕青应助Roy采纳,获得10
14秒前
wangziwei发布了新的文献求助30
14秒前
周周发布了新的文献求助20
14秒前
szmsnail完成签到,获得积分10
15秒前
周周发布了新的文献求助20
15秒前
周周发布了新的文献求助20
15秒前
周周发布了新的文献求助20
15秒前
周周发布了新的文献求助30
15秒前
周周发布了新的文献求助20
15秒前
周周发布了新的文献求助20
16秒前
周周发布了新的文献求助20
16秒前
ala完成签到,获得积分10
17秒前
四七完成签到,获得积分10
17秒前
下水管的老鼠完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152831
求助须知:如何正确求助?哪些是违规求助? 4348565
关于积分的说明 13539680
捐赠科研通 4190958
什么是DOI,文献DOI怎么找? 2298523
邀请新用户注册赠送积分活动 1298660
关于科研通互助平台的介绍 1243519