Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion

计算机科学 人工智能 深度学习 卷积神经网络 断层(地质) 特征提取 过程(计算) 人工神经网络 模式识别(心理学) 感知器 特征(语言学) 机器学习 语言学 哲学 地震学 地质学 操作系统
作者
Nan Wang,Fan Yang,Ridong Zhang,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (7): 7121-7135 被引量:61
标识
DOI:10.1109/tcyb.2020.3038832
摘要

Deep learning technology has been widely used in fault diagnosis for chemical processes. However, most deep learning technologies currently adopted only use a single network stack or a certain network stack with multilayer perceptron (MLP) behind it. Compared with traditional fault diagnosis technologies, this method has made progress in both the diagnosis accuracy and speed, but due to the limited performance of a single network, the accuracy or speed cannot meet the requirements to the greatest extent. In order to overcome such problems, this article proposes a fault diagnosis method using deep learning multimodel fusion. Different from previous deep learning diagnosis methods, this method uses long short-term memory (LSTM) and convolutional neural network (CNN) to extract features separately. The extracted features are then fused and MLP is taken as the input for further feature compression and extraction, and finally the diagnosis results will be obtained. LSTM has long-term memory capabilities, the extracted features have temporal characteristics, and CNNs have a good effect on the extraction of spatial features. The proposed method integrates these two aspects for diagnosis such that the features finally extracted by the network have both spatial and temporal characteristics, thereby improving the network's diagnostic performance. Finally, a TE chemical process and an industrial coking furnace process are taken for simulation testing. It is proved that the performance of this method is superior to existing deep learning fault diagnosis methods with simple sequential stacking for unilateral feature extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangzhuang发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
鳄鱼天使完成签到,获得积分10
2秒前
Ava应助山下梅子酒采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
czy完成签到,获得积分10
5秒前
朴素山兰发布了新的文献求助10
5秒前
5秒前
明媚发布了新的文献求助10
5秒前
桐桐应助高中生采纳,获得10
5秒前
6秒前
deep发布了新的文献求助10
7秒前
7秒前
scarlett完成签到,获得积分10
7秒前
英吉利25发布了新的文献求助10
7秒前
old幽露露完成签到 ,获得积分10
8秒前
江雯君完成签到,获得积分10
8秒前
Cecilia发布了新的文献求助10
8秒前
溪川流完成签到,获得积分10
9秒前
jason完成签到,获得积分0
9秒前
怕孤独的广缘完成签到 ,获得积分10
9秒前
香蕉觅云应助大反应釜采纳,获得10
9秒前
月夜孤影完成签到,获得积分10
10秒前
10秒前
10秒前
今后应助矮小的海豚采纳,获得10
10秒前
Miners发布了新的文献求助10
10秒前
笔墨留香发布了新的文献求助10
10秒前
研友_VZG7GZ应助王先生采纳,获得10
11秒前
iwonder完成签到 ,获得积分10
11秒前
可爱的函函应助追寻采纳,获得10
11秒前
12秒前
清脆火龙果完成签到,获得积分10
12秒前
可爱的函函应助暴躁的苡采纳,获得10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165