Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion

计算机科学 人工智能 深度学习 卷积神经网络 断层(地质) 特征提取 过程(计算) 人工神经网络 模式识别(心理学) 感知器 特征(语言学) 机器学习 语言学 哲学 地震学 地质学 操作系统
作者
Nan Wang,Fan Yang,Ridong Zhang,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (7): 7121-7135 被引量:61
标识
DOI:10.1109/tcyb.2020.3038832
摘要

Deep learning technology has been widely used in fault diagnosis for chemical processes. However, most deep learning technologies currently adopted only use a single network stack or a certain network stack with multilayer perceptron (MLP) behind it. Compared with traditional fault diagnosis technologies, this method has made progress in both the diagnosis accuracy and speed, but due to the limited performance of a single network, the accuracy or speed cannot meet the requirements to the greatest extent. In order to overcome such problems, this article proposes a fault diagnosis method using deep learning multimodel fusion. Different from previous deep learning diagnosis methods, this method uses long short-term memory (LSTM) and convolutional neural network (CNN) to extract features separately. The extracted features are then fused and MLP is taken as the input for further feature compression and extraction, and finally the diagnosis results will be obtained. LSTM has long-term memory capabilities, the extracted features have temporal characteristics, and CNNs have a good effect on the extraction of spatial features. The proposed method integrates these two aspects for diagnosis such that the features finally extracted by the network have both spatial and temporal characteristics, thereby improving the network's diagnostic performance. Finally, a TE chemical process and an industrial coking furnace process are taken for simulation testing. It is proved that the performance of this method is superior to existing deep learning fault diagnosis methods with simple sequential stacking for unilateral feature extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的面包完成签到,获得积分10
刚刚
Ava应助专注的兰采纳,获得10
刚刚
叶枫寒完成签到 ,获得积分10
1秒前
June完成签到,获得积分10
1秒前
1秒前
彼岸发布了新的文献求助10
1秒前
2秒前
森葵发布了新的文献求助10
2秒前
英俊的铭应助Uaena采纳,获得10
4秒前
赘婿应助陈82采纳,获得20
4秒前
5秒前
6秒前
关中大侠的涮肉坊完成签到,获得积分10
6秒前
6秒前
肚子好e啊完成签到 ,获得积分10
7秒前
夜神月发布了新的文献求助10
8秒前
Genius完成签到,获得积分10
8秒前
9秒前
英姑应助亦玉采纳,获得10
9秒前
wdddr发布了新的文献求助10
11秒前
Davidjun完成签到,获得积分10
11秒前
12秒前
12秒前
王乾宇完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助很好采纳,获得10
14秒前
嘻嘻哈哈应助Tutu采纳,获得10
16秒前
彭于晏应助zhang采纳,获得10
16秒前
Peyton Why完成签到,获得积分10
16秒前
16秒前
浮游应助年轻的绿凝采纳,获得30
16秒前
CodeCraft应助森葵采纳,获得10
17秒前
17秒前
浮游应助瓜瓜采纳,获得10
18秒前
20秒前
最佳发布了新的文献求助30
20秒前
20秒前
清欢昌丽发布了新的文献求助10
20秒前
共享精神应助huangduanku采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308512
求助须知:如何正确求助?哪些是违规求助? 4453661
关于积分的说明 13857726
捐赠科研通 4341377
什么是DOI,文献DOI怎么找? 2383861
邀请新用户注册赠送积分活动 1378491
关于科研通互助平台的介绍 1346482