Optimization-Inspired Compact Deep Compressive Sensing

人工智能 深度学习 匹配追踪 限制等距性 信号重构 稀疏逼近 人工神经网络 卷积神经网络 最优化问题
作者
Jian Zhang,Chen Zhao,Wen Gao
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 765-774 被引量:20
标识
DOI:10.1109/jstsp.2020.2977507
摘要

In order to improve CS performance of natural images, in this paper, we propose a novel framework to design an OPtimization-INspired Explicable deep Network, dubbed OPINE-Net, for adaptive sampling and recovery. Both orthogonal and binary constraints of sampling matrix are incorporated into OPINE-Net simultaneously. In particular, OPINE-Net is composed of three subnets: sampling subnet, initialization subnet and recovery subnet, and all the parameters in OPINE-Net (e.g. sampling matrix, nonlinear transforms, shrinkage threshold) are learned end-to-end, rather than hand-crafted. Moreover, considering the relationship among neighboring blocks, an enhanced version OPINE-Net $^+$ is developed, which allows image blocks to be sampled independently but reconstructed jointly to further enhance the performance. In addition, some interesting findings of learned sampling matrix are presented. Compared with existing state-of-the-art network-based CS methods, the proposed hardware-friendly OPINE-Nets not only achieve better performance but also require much fewer parameters and much less storage space, while maintaining a real-time running speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助麦穗儿采纳,获得10
刚刚
1秒前
2秒前
88C真是太神奇啦完成签到,获得积分10
3秒前
NexusExplorer应助大大小小采纳,获得10
4秒前
在水一方完成签到,获得积分0
5秒前
Lucas应助ABS采纳,获得10
6秒前
zho发布了新的文献求助10
7秒前
成太发布了新的文献求助10
7秒前
xvping发布了新的文献求助10
7秒前
he完成签到,获得积分10
9秒前
蔺契应助淡了个定不住采纳,获得10
10秒前
Lucas应助KEYBOY采纳,获得10
12秒前
12秒前
15秒前
于芋菊完成签到,获得积分0
16秒前
传奇3应助嘎嘎嘎嘎采纳,获得10
17秒前
ABS发布了新的文献求助10
18秒前
19秒前
Jasper应助英俊丹翠采纳,获得10
20秒前
向往完成签到,获得积分10
20秒前
22秒前
大大小小发布了新的文献求助10
23秒前
彭于晏应助科研通管家采纳,获得10
34秒前
研友_VZG7GZ应助科研通管家采纳,获得10
34秒前
buno应助科研通管家采纳,获得10
34秒前
劲秉应助科研通管家采纳,获得10
34秒前
CipherSage应助科研通管家采纳,获得10
35秒前
深情安青应助科研通管家采纳,获得10
35秒前
美好斓发布了新的文献求助10
35秒前
mudiboyang完成签到,获得积分10
37秒前
汉堡包应助每天不烦恼采纳,获得30
37秒前
38秒前
小二郎应助小张采纳,获得10
40秒前
42秒前
42秒前
KEYBOY发布了新的文献求助10
43秒前
45秒前
闹闹发布了新的文献求助10
48秒前
yyc发布了新的文献求助30
48秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270488
求助须知:如何正确求助?哪些是违规求助? 2909907
关于积分的说明 8351490
捐赠科研通 2580374
什么是DOI,文献DOI怎么找? 1403455
科研通“疑难数据库(出版商)”最低求助积分说明 655729
邀请新用户注册赠送积分活动 635146