Optimization-Inspired Compact Deep Compressive Sensing

人工智能 深度学习 匹配追踪 限制等距性 信号重构 稀疏逼近 人工神经网络 卷积神经网络 最优化问题
作者
Jian Zhang,Chen Zhao,Wen Gao
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 765-774 被引量:20
标识
DOI:10.1109/jstsp.2020.2977507
摘要

In order to improve CS performance of natural images, in this paper, we propose a novel framework to design an OPtimization-INspired Explicable deep Network, dubbed OPINE-Net, for adaptive sampling and recovery. Both orthogonal and binary constraints of sampling matrix are incorporated into OPINE-Net simultaneously. In particular, OPINE-Net is composed of three subnets: sampling subnet, initialization subnet and recovery subnet, and all the parameters in OPINE-Net (e.g. sampling matrix, nonlinear transforms, shrinkage threshold) are learned end-to-end, rather than hand-crafted. Moreover, considering the relationship among neighboring blocks, an enhanced version OPINE-Net $^+$ is developed, which allows image blocks to be sampled independently but reconstructed jointly to further enhance the performance. In addition, some interesting findings of learned sampling matrix are presented. Compared with existing state-of-the-art network-based CS methods, the proposed hardware-friendly OPINE-Nets not only achieve better performance but also require much fewer parameters and much less storage space, while maintaining a real-time running speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鹿靡完成签到 ,获得积分10
2秒前
2秒前
NexusExplorer应助温暖寻雪采纳,获得10
3秒前
5秒前
Te_quiero发布了新的文献求助30
6秒前
老阎应助111采纳,获得100
7秒前
生动路人应助111采纳,获得10
7秒前
Liufgui应助吨吨采纳,获得10
8秒前
YiyueChan完成签到,获得积分10
8秒前
lingo发布了新的文献求助10
9秒前
一米阳光完成签到,获得积分10
10秒前
粗心的尔曼完成签到,获得积分10
11秒前
2333完成签到,获得积分10
12秒前
十三完成签到 ,获得积分10
13秒前
NexusExplorer应助626采纳,获得10
13秒前
无花果应助程荷芬采纳,获得10
13秒前
啦啦啦发布了新的文献求助10
15秒前
陈住气完成签到,获得积分10
20秒前
李健的小迷弟应助weiy采纳,获得10
22秒前
icy_cyr发布了新的文献求助10
23秒前
djf完成签到,获得积分10
24秒前
乐乐应助卤蛋今天没学习采纳,获得10
25秒前
25秒前
25秒前
25秒前
27秒前
28秒前
元气少女猪刚鬣应助zz采纳,获得10
28秒前
boytoa完成签到 ,获得积分10
29秒前
bystanding发布了新的文献求助10
29秒前
glomming发布了新的文献求助30
30秒前
小帅发布了新的文献求助10
31秒前
31秒前
庄庄发布了新的文献求助10
33秒前
33秒前
33秒前
薯条发布了新的文献求助20
34秒前
Xwu发布了新的文献求助20
34秒前
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075