Feature selection based on differentially correlated gene pairs reveals the mechanism of IFN-β therapy for multiple sclerosis

多发性硬化 特征选择 基因 机制(生物学) 微阵列 生物信息学 计算生物学 养生 微阵列分析技术 基因表达 生物 医学 免疫学 机器学习 内科学 计算机科学 遗传学 哲学 认识论
作者
Tao Jin,Chi Wang,Suyan Tian
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:8: e8812-e8812 被引量:4
标识
DOI:10.7717/peerj.8812
摘要

Multiple sclerosis (MS) is one of the most common neurological disabilities of the central nervous system. Immune-modulatory therapy with Interferon-β (IFN-β) is a commonly used first-line treatment to prevent MS patients from relapses. Nevertheless, a large proportion of MS patients on IFN-β therapy experience their first relapse within 2 years of treatment initiation. Feature selection, a machine learning strategy, is routinely used in the fields of bioinformatics and computational biology to determine which subset of genes is most relevant to an outcome of interest. The majority of feature selection methods focus on alterations in gene expression levels. In this study, we sought to determine which genes are most relevant to relapse of MS patients on IFN-β therapy. Rather than the usual focus on alterations in gene expression levels, we devised a feature selection method based on alterations in gene-to-gene interactions. In this study, we applied the proposed method to a longitudinal microarray dataset and evaluated the IFN-β effect on MS patients to identify gene pairs with differentially correlated edges that are consistent over time in the responder group compared to the non-responder group. The resulting gene list had a good predictive ability on an independent validation set and explicit biological implications related to MS. To conclude, it is anticipated that the proposed method will gain widespread interest and application in personalized treatment research to facilitate prediction of which patients may respond to a specific regimen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Michael-布莱恩特完成签到,获得积分10
3秒前
3秒前
顺心的飞飞应助不要碧莲采纳,获得10
4秒前
4秒前
4秒前
蓝桉完成签到,获得积分20
4秒前
wanci应助西米采纳,获得10
4秒前
柯米克发布了新的文献求助10
5秒前
猪猪hero应助嘴巴张大一点采纳,获得10
5秒前
李健应助怎么忘了采纳,获得100
6秒前
7秒前
lan发布了新的文献求助30
7秒前
早睡早起不秃头完成签到,获得积分10
8秒前
完美世界应助张火火采纳,获得10
9秒前
9秒前
俊秀的跳跳糖完成签到,获得积分20
10秒前
10秒前
所所应助kk采纳,获得10
10秒前
10秒前
11秒前
小二郎应助木子采纳,获得10
11秒前
12秒前
12秒前
12秒前
NexusExplorer应助忧伤的丁丁采纳,获得10
12秒前
14秒前
研友_LN3xyn完成签到,获得积分10
14秒前
jochimchan发布了新的文献求助10
16秒前
西米发布了新的文献求助10
16秒前
NexusExplorer应助kk采纳,获得10
16秒前
852应助dandelionshun采纳,获得10
17秒前
在水一方应助傲娇的觅翠采纳,获得10
17秒前
17秒前
英勇的老头完成签到,获得积分10
17秒前
Aurora.H发布了新的文献求助10
18秒前
CipherSage应助柯米克采纳,获得10
18秒前
杨沛儒发布了新的文献求助10
18秒前
ali8ba发布了新的文献求助10
20秒前
jochimchan完成签到,获得积分10
20秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152