作者
Martyna Głodowska,Emiliano Stopelli,M. Schneider,Bhasker Rathi,Daniel Straub,Alex Lightfoot,Rolf Kipfer,Michael Berg,Mike S. M. Jetten,Sara Kleindienst,Andreas Kappler,Martyna Głodowska,Andreas Kappler,Sara Kleindienst,Olaf A. Cirpka,Bhasker Rathi,Alexandra Lightfoot,Emiliano Stopelli,Michael Berg,Rolf Kipfer,Lenny H. E. Winkel,M. Schneider,Elisabeth Eiche,Agnes Kontny,Thomas Neumann,Pham Hung Viet,Trang Pham,Duong Vu,Vi Mai Lan,Mai Hoang Tran,Viet Nga,Henning Prommer
摘要
Abstract Arsenic groundwater contamination threatens the health of millions of people worldwide, particularly in South and Southeast Asia. In most cases, the release of arsenic from sediment was caused by microbial reductive dissolution of arsenic-bearing iron(III) minerals with organic carbon being used as microbial electron donor. Although in many arsenic-contaminated aquifers high concentrations of methane were observed, its role in arsenic mobilization is unknown. Here, using microcosms experiments and hydrogeochemical and microbial community analyses, we demonstrate that methane functions as electron donor for methanotrophs, triggering the reductive dissolution of arsenic-bearing iron(III) minerals, increasing the abundance of genes related to methane oxidation, and ultimately mobilizing arsenic into the water. Our findings provide evidence for a methane-mediated mechanism for arsenic mobilization that is distinct from previously described pathways. Taking this together with the common presence of methane in arsenic-contaminated aquifers, we suggest that this methane-driven arsenic mobilization may contribute to arsenic contamination of groundwater on a global scale.