亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Advanced Automated Image Analysis Model for Scoring of ER, PR, HER-2 and Ki-67 in Breast Carcinoma

分级(工程) 免疫组织化学 乳腺癌 人工智能 计算机科学 乳腺癌 病理 医学 癌症 内科学 生物 生态学
作者
Min Feng,Jie Chen,Xuhui Xiang,Yang Deng,Yan-Yan Zhou,Zhang Zhang,Zhongxi Zheng,Ji Bao,Hong Bu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 108441-108451 被引量:8
标识
DOI:10.1109/access.2020.3011294
摘要

Immunohistochemistry (IHC) plays an important role in evaluating the status of ER, PR, Ki-67 and human epidermal growth factor receptor 2 (HER-2) during diagnosis of breast cancer. Although some existing automated approaches can solve the high time-consumption and inter-/intra-observer variability drawbacks to a certain extent, most of them are can't analyze both nuclear staining and cell membrane staining using the same method. This is attributed to the difference in localization of the positive signal of immunohistochemical staining in different biological markers. The present study proposes a novel automated image analysis model for scoring and grading of ER, PR, Ki-67 and HER-2 immunohistochemical images based on whole tissue sections in breast cancer. The scoring results of the trained model and manual interpretation of ER, PR, Ki-67 and HER-2 were then finally analyzed and compared. Experimental results show that the F1-measure was 0.8450, 0.8533 and 0.7962 for nuclear recognition of Ki-67, ER/PR and HER-2 respectively. For stain grading of Ki-67, ER/PR and HER-2, the F1-measure was 0.9776, 0.8306 and 0.9573 respectively. The scoring consistency of ER/PR, Ki-67 and HER-2 between our model and expert interpretation was 0.9279, 0.9712 and 0.8046 respectively. Our results demonstrate that artificial intelligence technology is a feasible and accurate method for accurate quantitative immunohistochemical analysis that can solve the drawbacks of low repeatability and time consumption brought by manual counting. The main contribution of our proposed model is that it can recognize both nuclear staining and cell membrane staining and grade the staining intensity as a sequential learning task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生姜批发刘哥完成签到 ,获得积分10
6秒前
8秒前
科研通AI2S应助11采纳,获得10
9秒前
深情安青应助11采纳,获得10
9秒前
深情安青应助11采纳,获得10
9秒前
小二郎应助11采纳,获得10
9秒前
zwd完成签到,获得积分10
9秒前
10秒前
11秒前
24Rabbits完成签到,获得积分10
11秒前
吾日三省吾身完成签到 ,获得积分10
12秒前
13秒前
15秒前
来了来了发布了新的文献求助10
17秒前
123456发布了新的文献求助10
20秒前
win完成签到 ,获得积分10
24秒前
25秒前
战神林北完成签到,获得积分10
26秒前
wanjingwan给wanjingwan的求助进行了留言
27秒前
29秒前
哈哈哈哈hug完成签到,获得积分10
31秒前
Byron发布了新的文献求助10
32秒前
慕青应助马上毕业采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
39秒前
spark810应助科研通管家采纳,获得100
39秒前
39秒前
SciGPT应助科研通管家采纳,获得10
39秒前
谦让小松鼠完成签到 ,获得积分10
39秒前
科目三应助科研通管家采纳,获得10
39秒前
Byron完成签到,获得积分10
40秒前
43秒前
科研通AI2S应助ma采纳,获得10
46秒前
马上毕业发布了新的文献求助10
48秒前
Amber完成签到 ,获得积分10
48秒前
123456完成签到,获得积分10
50秒前
ccm应助咫尺天涯采纳,获得10
53秒前
LZY发布了新的文献求助10
56秒前
1分钟前
勤劳影子完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271437
求助须知:如何正确求助?哪些是违规求助? 2910674
关于积分的说明 8355402
捐赠科研通 2581109
什么是DOI,文献DOI怎么找? 1404001
科研通“疑难数据库(出版商)”最低求助积分说明 656054
邀请新用户注册赠送积分活动 635530