Unveiling Temperature-Induced Structural Domains and Movement of Oxygen Vacancies in SrTiO3 with Graphene

石墨烯 材料科学 铁电性 凝聚态物理 极化(电化学) 化学物理 纳米技术 光电子学 电介质 物理 物理化学 化学
作者
Si Chen,Xin Chen,Elisabeth A. Duijnstee,Biplab Sanyal,T. Banerjee
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (47): 52915-52921 被引量:3
标识
DOI:10.1021/acsami.0c15458
摘要

Heterointerfaces coupling complex oxides exhibit coexisting functional properties such as magnetism, superconductivity, and ferroelectricity, often absent in their individual constituent. SrTiO3 (STO), a canonical band insulator, is an active constituent of such heterointerfaces. Temperature-, strain-, or mechanical stress-induced ferroelastic transition leads to the formation of narrow domains and domain walls in STO. Such ferroelastic domain walls have been studied using imaging or transport techniques and, often, the findings are influenced by the choice and interaction of the electrodes with STO. In this work, we use graphene as a unique platform to unveil the movement of oxygen vacancies and ferroelastic domain walls near the STO surface by studying the temperature and gate bias dependence of charge transport in graphene. By sweeping the back gate voltage, we observe antihysteresis in graphene typically observed in conventional ferroelectric oxides. Interestingly, we find features in antihysteresis that are related to the movement of domain walls and of oxygen vacancies in STO. We ascertain this by analyzing the time dependence of the graphene square resistance at different temperatures and gate bias. Density functional calculations estimate the surface polarization and formation energies of layer-dependent oxygen vacancies in STO. This corroborates quantitatively with the activation energies determined from the temperature dependence of the graphene square resistance. Introduction of a hexagonal boron nitride (hBN) layer, of varying thicknesses, between graphene and STO leads to a gradual disappearance of the observed features, implying the influence of the domain walls onto the potential landscape in graphene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
季夏发布了新的文献求助10
刚刚
Tingshan发布了新的文献求助20
1秒前
背后的诺言完成签到 ,获得积分20
1秒前
GHOST完成签到,获得积分20
2秒前
2秒前
勤奋的蜗牛完成签到,获得积分20
2秒前
omo发布了新的文献求助10
2秒前
Akim应助糊糊采纳,获得10
3秒前
Zn应助dsjlove采纳,获得10
3秒前
月球宇航员完成签到,获得积分10
3秒前
3秒前
英姑应助亲爱的安德烈采纳,获得10
5秒前
今后应助workwork采纳,获得10
5秒前
5秒前
落后翠柏发布了新的文献求助10
5秒前
淡然凝丹完成签到,获得积分10
5秒前
Y_Jfeng完成签到,获得积分10
6秒前
潼熙甄完成签到 ,获得积分10
7秒前
Lucas应助糖糖采纳,获得10
7秒前
wyblobin发布了新的文献求助10
7秒前
星辰大海应助叶飞荷采纳,获得10
7秒前
wanmiao12完成签到,获得积分10
8秒前
8秒前
9秒前
lmr完成签到,获得积分10
9秒前
gu完成签到 ,获得积分10
10秒前
科研小白完成签到,获得积分10
10秒前
马建国发布了新的文献求助10
10秒前
顾矜应助落后翠柏采纳,获得10
10秒前
搜集达人应助无情的白桃采纳,获得10
10秒前
顾矜应助lina采纳,获得10
10秒前
10秒前
科研通AI5应助南桥采纳,获得10
11秒前
12秒前
翟函完成签到,获得积分10
12秒前
苏照杭应助余红采纳,获得10
12秒前
科研通AI5应助LLL采纳,获得10
12秒前
申小萌发布了新的文献求助20
13秒前
爱吃年糕发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762