Network-Based Target Prioritization and Drug Candidate Identification for Multiple Sclerosis: From Analyzing “Omics Data” to Druggability Simulations

可药性 鉴定(生物学) 计算生物学 药效团 虚拟筛选 药物发现 交互网络 蛋白质组学 计算机科学 小桶 生物信息学 生物 遗传学 基因本体论 植物 基因 基因表达
作者
Yang Ji,Hongchun Li,Fan Wang,Fei Xiao,Wenying Yan,Guang Hu
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:12 (5): 917-929 被引量:8
标识
DOI:10.1021/acschemneuro.1c00011
摘要

Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the central nervous system. While the drugs currently available for MS provide symptomatic benefit, there is no curative treatment. The emergence of large-scale multiomics data and network theory provide new opportunities for drug discovery in MS, as these are promising strategies for developing novel drugs. In this study, we proposed a computational framework that combined biomolecular network modeling and structural dynamics analysis to facilitate the discovery of new drugs with potential activity in MS. First, we developed a new shortest path-based algorithm that prioritized differentially expressed genes using a newly topological and functional exploration of protein–protein interaction network. Then, pathway enrichment analysis and an assessment of target druggability suggested that TNF-α-induced protein 3 (TNFAIP3), which is involved in NF-κ B signaling, could be a potential therapeutic target for MS. Finally, druggability simulations and mutation enrichment analysis of the TNFAIP3 dimer presented two druggable sites. Follow-up pharmacophore model-based virtual screening of the two sites yielded 30 hit compounds with low energy scores. In summary, this novel method based on analyzing "omics data" and performing druggability simulations, is a systematic approach that unravels disease mechanisms and links them to the chemical space to develop treatments and can be applied to other complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大Doctor陈发布了新的文献求助80
2秒前
wangxx完成签到,获得积分20
6秒前
11发布了新的文献求助10
10秒前
10秒前
行走在科研的小路上完成签到,获得积分10
13秒前
lily完成签到,获得积分20
14秒前
林夕完成签到 ,获得积分10
15秒前
15秒前
情怀应助凶凶采纳,获得10
17秒前
充电宝应助psycan采纳,获得10
18秒前
Tal完成签到,获得积分10
19秒前
一口一个小面包完成签到,获得积分10
20秒前
Ch完成签到 ,获得积分10
23秒前
24秒前
25秒前
Hello应助刘超D采纳,获得10
25秒前
wanci应助逃亡的小狗采纳,获得10
26秒前
YPXCS完成签到 ,获得积分10
27秒前
27秒前
亻圭完成签到,获得积分10
28秒前
28秒前
可爱的函函应助archer01采纳,获得10
28秒前
29秒前
飞天三叉戟给Roman的求助进行了留言
30秒前
30秒前
Jasper应助否认冶游史采纳,获得10
31秒前
31秒前
32秒前
psycan发布了新的文献求助10
33秒前
33秒前
MeiLing完成签到,获得积分10
35秒前
35秒前
书篆完成签到,获得积分10
35秒前
35秒前
IlIIlIlIIIllI应助一个小柠檬采纳,获得30
36秒前
37秒前
单复天完成签到,获得积分10
38秒前
研友_宋文昊完成签到,获得积分10
39秒前
123发布了新的文献求助10
40秒前
jc发布了新的文献求助30
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Caveolins and Caveolae 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461184
求助须知:如何正确求助?哪些是违规求助? 3054912
关于积分的说明 9045435
捐赠科研通 2744812
什么是DOI,文献DOI怎么找? 1505685
科研通“疑难数据库(出版商)”最低求助积分说明 695786
邀请新用户注册赠送积分活动 695205