已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Depression From Hearing Loss Using Machine Learning

置信区间 听力损失 病人健康调查表 萧条(经济学) 医学 全国健康与营养检查调查 耳鸣 听力学 比例(比率) 机器学习 心理学 精神科 人口 抑郁症状 计算机科学 焦虑 经济 宏观经济学 内科学 物理 环境卫生 量子力学
作者
Matthew G. Crowson,Kevin H. Franck,Laura C. Rosella,Timothy C. Y. Chan
出处
期刊:Ear and Hearing [Lippincott Williams & Wilkins]
卷期号:42 (4): 982-989 被引量:8
标识
DOI:10.1097/aud.0000000000000993
摘要

Hearing loss is the most common sensory loss in humans and carries an enhanced risk of depression. No prior studies have attempted a contemporary machine learning approach to predict depression using subjective and objective hearing loss predictors. The objective was to deploy supervised machine learning to predict scores on a validated depression scale using subjective and objective audiometric variables and other health determinant predictors.A large predictor set of health determinants from the National Health and Nutrition Examination Survey 2015-2016 database was used to predict adults' scores on a validated instrument to screen for the presence and severity of depression (Patient Health Questionnaire-9 [PHQ-9]). After model training, the relative influence of individual predictors on depression scores was stratified and analyzed. Model prediction performance was determined by prediction error metrics.The test set mean absolute error was 3.03 (95% confidence interval: 2.91 to 3.14) and 2.55 (95% confidence interval: 2.48 to 2.62) on datasets with audiology-only predictors and all predictors, respectively, on the PHQ-9's 27-point scale. Participants' self-reported frustration when talking to members of family or friends due to hearing loss was the fifth-most influential of all predictors. Of the top 10 most influential audiometric predictors, five were related to social contexts, two for significant noise exposure, two objective audiometric parameters, and one presence of bothersome tinnitus.Machine learning algorithms can accurately predict PHQ-9 depression scale scores from National Health and Nutrition Examination Survey data. The most influential audiometric predictors of higher scores on a validated depression scale were social dynamics of hearing loss and not objective audiometric testing. Such models could be useful in predicting depression scale scores at the point-of-care in conjunction with a standard audiologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LX完成签到,获得积分10
刚刚
工藤新一完成签到,获得积分10
1秒前
as12发布了新的文献求助10
2秒前
大模型应助工藤新一采纳,获得10
5秒前
6秒前
8秒前
HC应助灯飞采纳,获得10
11秒前
12秒前
14秒前
jpc完成签到,获得积分10
17秒前
18秒前
所所应助叫秋田犬的猫采纳,获得10
19秒前
blue发布了新的文献求助10
20秒前
leoelizabeth完成签到 ,获得积分10
21秒前
23秒前
Dr.miao发布了新的文献求助10
23秒前
24秒前
彳亍发布了新的文献求助10
25秒前
希望天下0贩的0应助ChiaJan采纳,获得10
26秒前
26秒前
希望天下0贩的0应助不喜采纳,获得10
27秒前
可耐的青雪完成签到 ,获得积分10
27秒前
小马甲应助歪歪采纳,获得10
28秒前
28秒前
28秒前
ljc发布了新的文献求助30
29秒前
29秒前
852应助科研通管家采纳,获得10
30秒前
充电宝应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得30
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
Liufgui应助科研通管家采纳,获得50
30秒前
31秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
31秒前
妙蛙种子应助科研通管家采纳,获得50
31秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994330
求助须知:如何正确求助?哪些是违规求助? 3534764
关于积分的说明 11266452
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749