亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Depression From Hearing Loss Using Machine Learning

置信区间 听力损失 病人健康调查表 萧条(经济学) 医学 全国健康与营养检查调查 耳鸣 听力学 比例(比率) 机器学习 精神科 人口 抑郁症状 计算机科学 焦虑 物理 环境卫生 量子力学 经济 内科学 宏观经济学
作者
Matthew G. Crowson,Kevin H. Franck,Laura C. Rosella,Timothy C. Y. Chan
出处
期刊:Ear and Hearing [Lippincott Williams & Wilkins]
卷期号:42 (4): 982-989 被引量:12
标识
DOI:10.1097/aud.0000000000000993
摘要

Hearing loss is the most common sensory loss in humans and carries an enhanced risk of depression. No prior studies have attempted a contemporary machine learning approach to predict depression using subjective and objective hearing loss predictors. The objective was to deploy supervised machine learning to predict scores on a validated depression scale using subjective and objective audiometric variables and other health determinant predictors.A large predictor set of health determinants from the National Health and Nutrition Examination Survey 2015-2016 database was used to predict adults' scores on a validated instrument to screen for the presence and severity of depression (Patient Health Questionnaire-9 [PHQ-9]). After model training, the relative influence of individual predictors on depression scores was stratified and analyzed. Model prediction performance was determined by prediction error metrics.The test set mean absolute error was 3.03 (95% confidence interval: 2.91 to 3.14) and 2.55 (95% confidence interval: 2.48 to 2.62) on datasets with audiology-only predictors and all predictors, respectively, on the PHQ-9's 27-point scale. Participants' self-reported frustration when talking to members of family or friends due to hearing loss was the fifth-most influential of all predictors. Of the top 10 most influential audiometric predictors, five were related to social contexts, two for significant noise exposure, two objective audiometric parameters, and one presence of bothersome tinnitus.Machine learning algorithms can accurately predict PHQ-9 depression scale scores from National Health and Nutrition Examination Survey data. The most influential audiometric predictors of higher scores on a validated depression scale were social dynamics of hearing loss and not objective audiometric testing. Such models could be useful in predicting depression scale scores at the point-of-care in conjunction with a standard audiologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qjd发布了新的文献求助10
1秒前
英俊的铭应助oleskarabach采纳,获得10
2秒前
火星上含芙完成签到 ,获得积分10
4秒前
打打应助qjd采纳,获得10
4秒前
8秒前
12秒前
24秒前
英姑应助坚定汝燕采纳,获得10
31秒前
我是老大应助科研通管家采纳,获得10
32秒前
ho应助科研通管家采纳,获得10
32秒前
JamesPei应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
37秒前
欣喜宛亦完成签到 ,获得积分10
45秒前
48秒前
姆姆没买完成签到 ,获得积分0
55秒前
wanci应助xuan采纳,获得10
1分钟前
tu完成签到 ,获得积分10
1分钟前
1分钟前
日落发布了新的文献求助10
1分钟前
xuan发布了新的文献求助10
1分钟前
1分钟前
早茶可口完成签到,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
xuan完成签到,获得积分10
1分钟前
1分钟前
子平完成签到 ,获得积分0
1分钟前
田様应助坚定汝燕采纳,获得10
1分钟前
日落发布了新的文献求助10
2分钟前
2分钟前
日落完成签到,获得积分10
2分钟前
2分钟前
2分钟前
qjd发布了新的文献求助10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助qjd采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376359
求助须知:如何正确求助?哪些是违规求助? 4501480
关于积分的说明 14013086
捐赠科研通 4409259
什么是DOI,文献DOI怎么找? 2422122
邀请新用户注册赠送积分活动 1414945
关于科研通互助平台的介绍 1391803