Predicting Depression From Hearing Loss Using Machine Learning

置信区间 听力损失 病人健康调查表 萧条(经济学) 医学 全国健康与营养检查调查 耳鸣 听力学 比例(比率) 机器学习 精神科 人口 抑郁症状 计算机科学 焦虑 物理 环境卫生 量子力学 经济 内科学 宏观经济学
作者
Matthew G. Crowson,Kevin H. Franck,Laura C. Rosella,Timothy C. Y. Chan
出处
期刊:Ear and Hearing [Lippincott Williams & Wilkins]
卷期号:42 (4): 982-989 被引量:12
标识
DOI:10.1097/aud.0000000000000993
摘要

Hearing loss is the most common sensory loss in humans and carries an enhanced risk of depression. No prior studies have attempted a contemporary machine learning approach to predict depression using subjective and objective hearing loss predictors. The objective was to deploy supervised machine learning to predict scores on a validated depression scale using subjective and objective audiometric variables and other health determinant predictors.A large predictor set of health determinants from the National Health and Nutrition Examination Survey 2015-2016 database was used to predict adults' scores on a validated instrument to screen for the presence and severity of depression (Patient Health Questionnaire-9 [PHQ-9]). After model training, the relative influence of individual predictors on depression scores was stratified and analyzed. Model prediction performance was determined by prediction error metrics.The test set mean absolute error was 3.03 (95% confidence interval: 2.91 to 3.14) and 2.55 (95% confidence interval: 2.48 to 2.62) on datasets with audiology-only predictors and all predictors, respectively, on the PHQ-9's 27-point scale. Participants' self-reported frustration when talking to members of family or friends due to hearing loss was the fifth-most influential of all predictors. Of the top 10 most influential audiometric predictors, five were related to social contexts, two for significant noise exposure, two objective audiometric parameters, and one presence of bothersome tinnitus.Machine learning algorithms can accurately predict PHQ-9 depression scale scores from National Health and Nutrition Examination Survey data. The most influential audiometric predictors of higher scores on a validated depression scale were social dynamics of hearing loss and not objective audiometric testing. Such models could be useful in predicting depression scale scores at the point-of-care in conjunction with a standard audiologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NiL完成签到,获得积分10
刚刚
Zoe_Zhang发布了新的文献求助10
刚刚
科研通AI5应助wyb采纳,获得10
1秒前
1秒前
1秒前
祝雨晴完成签到 ,获得积分10
1秒前
翼德救我i应助迷你的念珍采纳,获得10
1秒前
1111完成签到,获得积分10
3秒前
杨秋月完成签到,获得积分10
3秒前
汉桑波欸完成签到,获得积分10
3秒前
共享精神应助抚琴祛魅采纳,获得30
3秒前
4秒前
单单来迟完成签到,获得积分10
4秒前
完美世界应助发发发采纳,获得10
4秒前
科研通AI6应助wp采纳,获得10
4秒前
huakun发布了新的文献求助10
6秒前
耕云钓月完成签到,获得积分10
6秒前
6秒前
你的发布了新的文献求助10
7秒前
CR7应助grace135采纳,获得20
8秒前
8秒前
科研通AI5应助刻苦的雨莲采纳,获得30
8秒前
和谐的素完成签到,获得积分10
9秒前
9秒前
10秒前
iNk应助洛尘采纳,获得20
10秒前
10秒前
量子星尘发布了新的文献求助50
10秒前
Yuanyuan发布了新的文献求助10
12秒前
yyj完成签到,获得积分10
12秒前
Killor完成签到,获得积分10
13秒前
64658应助云赵采纳,获得10
13秒前
14秒前
斯文败类应助mm采纳,获得10
14秒前
Moon发布了新的文献求助10
14秒前
hilapo发布了新的文献求助10
15秒前
15秒前
wyb发布了新的文献求助10
16秒前
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310