Predicting Depression From Hearing Loss Using Machine Learning

置信区间 听力损失 病人健康调查表 萧条(经济学) 医学 全国健康与营养检查调查 耳鸣 听力学 比例(比率) 机器学习 心理学 精神科 人口 抑郁症状 计算机科学 焦虑 物理 环境卫生 量子力学 经济 内科学 宏观经济学
作者
Matthew G. Crowson,Kevin H. Franck,Laura C. Rosella,Timothy C. Y. Chan
出处
期刊:Ear and Hearing 卷期号:42 (4): 982-989 被引量:8
标识
DOI:10.1097/aud.0000000000000993
摘要

Hearing loss is the most common sensory loss in humans and carries an enhanced risk of depression. No prior studies have attempted a contemporary machine learning approach to predict depression using subjective and objective hearing loss predictors. The objective was to deploy supervised machine learning to predict scores on a validated depression scale using subjective and objective audiometric variables and other health determinant predictors.A large predictor set of health determinants from the National Health and Nutrition Examination Survey 2015-2016 database was used to predict adults' scores on a validated instrument to screen for the presence and severity of depression (Patient Health Questionnaire-9 [PHQ-9]). After model training, the relative influence of individual predictors on depression scores was stratified and analyzed. Model prediction performance was determined by prediction error metrics.The test set mean absolute error was 3.03 (95% confidence interval: 2.91 to 3.14) and 2.55 (95% confidence interval: 2.48 to 2.62) on datasets with audiology-only predictors and all predictors, respectively, on the PHQ-9's 27-point scale. Participants' self-reported frustration when talking to members of family or friends due to hearing loss was the fifth-most influential of all predictors. Of the top 10 most influential audiometric predictors, five were related to social contexts, two for significant noise exposure, two objective audiometric parameters, and one presence of bothersome tinnitus.Machine learning algorithms can accurately predict PHQ-9 depression scale scores from National Health and Nutrition Examination Survey data. The most influential audiometric predictors of higher scores on a validated depression scale were social dynamics of hearing loss and not objective audiometric testing. Such models could be useful in predicting depression scale scores at the point-of-care in conjunction with a standard audiologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin关闭了lin文献求助
4秒前
义气凡阳发布了新的文献求助10
4秒前
踏实的白羊完成签到,获得积分10
9秒前
可靠的念柏关注了科研通微信公众号
11秒前
12秒前
独特的尔风完成签到,获得积分10
12秒前
凛冬完成签到,获得积分10
12秒前
木槿完成签到 ,获得积分10
12秒前
chhzz完成签到 ,获得积分10
13秒前
13秒前
CodeCraft应助称心的渊思采纳,获得10
14秒前
14秒前
大白完成签到,获得积分10
14秒前
精明白风发布了新的文献求助10
15秒前
顶顶顶发布了新的文献求助30
15秒前
好英俊的马铃薯!完成签到,获得积分20
16秒前
17秒前
追梦发布了新的文献求助10
18秒前
起点发布了新的文献求助10
18秒前
英姑应助小帅哥采纳,获得10
19秒前
大卫在分享完成签到,获得积分0
20秒前
CipherSage应助lion_wei采纳,获得10
20秒前
21秒前
所所应助西柚采纳,获得10
21秒前
凛冬发布了新的文献求助10
21秒前
22秒前
22秒前
无辜善愁完成签到,获得积分10
24秒前
852应助皮皮最可爱采纳,获得10
26秒前
11完成签到 ,获得积分10
26秒前
传奇3应助sunny采纳,获得10
27秒前
爱猫的纭完成签到,获得积分10
27秒前
29秒前
桐桐应助科研通管家采纳,获得10
31秒前
酷波er应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
ding应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790837
关于积分的说明 7796725
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301727
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194