Predicting Depression From Hearing Loss Using Machine Learning

置信区间 听力损失 病人健康调查表 萧条(经济学) 医学 全国健康与营养检查调查 耳鸣 听力学 比例(比率) 机器学习 心理学 精神科 人口 抑郁症状 计算机科学 焦虑 经济 宏观经济学 内科学 物理 环境卫生 量子力学
作者
Matthew G. Crowson,Kevin H. Franck,Laura C. Rosella,Timothy C. Y. Chan
出处
期刊:Ear and Hearing 卷期号:42 (4): 982-989 被引量:8
标识
DOI:10.1097/aud.0000000000000993
摘要

Hearing loss is the most common sensory loss in humans and carries an enhanced risk of depression. No prior studies have attempted a contemporary machine learning approach to predict depression using subjective and objective hearing loss predictors. The objective was to deploy supervised machine learning to predict scores on a validated depression scale using subjective and objective audiometric variables and other health determinant predictors.A large predictor set of health determinants from the National Health and Nutrition Examination Survey 2015-2016 database was used to predict adults' scores on a validated instrument to screen for the presence and severity of depression (Patient Health Questionnaire-9 [PHQ-9]). After model training, the relative influence of individual predictors on depression scores was stratified and analyzed. Model prediction performance was determined by prediction error metrics.The test set mean absolute error was 3.03 (95% confidence interval: 2.91 to 3.14) and 2.55 (95% confidence interval: 2.48 to 2.62) on datasets with audiology-only predictors and all predictors, respectively, on the PHQ-9's 27-point scale. Participants' self-reported frustration when talking to members of family or friends due to hearing loss was the fifth-most influential of all predictors. Of the top 10 most influential audiometric predictors, five were related to social contexts, two for significant noise exposure, two objective audiometric parameters, and one presence of bothersome tinnitus.Machine learning algorithms can accurately predict PHQ-9 depression scale scores from National Health and Nutrition Examination Survey data. The most influential audiometric predictors of higher scores on a validated depression scale were social dynamics of hearing loss and not objective audiometric testing. Such models could be useful in predicting depression scale scores at the point-of-care in conjunction with a standard audiologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reck发布了新的文献求助10
刚刚
1秒前
DK发布了新的文献求助10
1秒前
英俊的铭应助ren采纳,获得10
1秒前
圈圈发布了新的文献求助10
1秒前
乐乱完成签到 ,获得积分10
2秒前
415484112完成签到,获得积分10
3秒前
yinyi发布了新的文献求助10
3秒前
3秒前
赵一丁完成签到,获得积分10
4秒前
成就绮琴完成签到 ,获得积分10
4秒前
Chen完成签到,获得积分10
4秒前
huanfid完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
Stitch完成签到 ,获得积分10
5秒前
5秒前
眯眯眼的冷珍完成签到,获得积分10
5秒前
bjyx完成签到,获得积分10
5秒前
reck完成签到,获得积分10
6秒前
pharmstudent发布了新的文献求助30
6秒前
小田完成签到,获得积分10
6秒前
小喵发布了新的文献求助10
7秒前
FashionBoy应助毛毛哦啊采纳,获得10
7秒前
Lucas应助Chen采纳,获得10
8秒前
强健的蚂蚁完成签到,获得积分20
8秒前
小宇发布了新的文献求助10
8秒前
斜杠武完成签到,获得积分20
8秒前
9秒前
伞兵龙发布了新的文献求助10
9秒前
RC_Wang应助科研小民工采纳,获得10
9秒前
sanben完成签到,获得积分10
9秒前
9秒前
_蝴蝶小姐完成签到,获得积分10
10秒前
诗轩发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672