亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Depression From Hearing Loss Using Machine Learning

置信区间 听力损失 病人健康调查表 萧条(经济学) 医学 全国健康与营养检查调查 耳鸣 听力学 比例(比率) 机器学习 精神科 人口 抑郁症状 计算机科学 焦虑 经济 宏观经济学 内科学 物理 环境卫生 量子力学
作者
Matthew G. Crowson,Kevin H. Franck,Laura C. Rosella,Timothy C. Y. Chan
出处
期刊:Ear and Hearing [Lippincott Williams & Wilkins]
卷期号:42 (4): 982-989 被引量:12
标识
DOI:10.1097/aud.0000000000000993
摘要

Hearing loss is the most common sensory loss in humans and carries an enhanced risk of depression. No prior studies have attempted a contemporary machine learning approach to predict depression using subjective and objective hearing loss predictors. The objective was to deploy supervised machine learning to predict scores on a validated depression scale using subjective and objective audiometric variables and other health determinant predictors.A large predictor set of health determinants from the National Health and Nutrition Examination Survey 2015-2016 database was used to predict adults' scores on a validated instrument to screen for the presence and severity of depression (Patient Health Questionnaire-9 [PHQ-9]). After model training, the relative influence of individual predictors on depression scores was stratified and analyzed. Model prediction performance was determined by prediction error metrics.The test set mean absolute error was 3.03 (95% confidence interval: 2.91 to 3.14) and 2.55 (95% confidence interval: 2.48 to 2.62) on datasets with audiology-only predictors and all predictors, respectively, on the PHQ-9's 27-point scale. Participants' self-reported frustration when talking to members of family or friends due to hearing loss was the fifth-most influential of all predictors. Of the top 10 most influential audiometric predictors, five were related to social contexts, two for significant noise exposure, two objective audiometric parameters, and one presence of bothersome tinnitus.Machine learning algorithms can accurately predict PHQ-9 depression scale scores from National Health and Nutrition Examination Survey data. The most influential audiometric predictors of higher scores on a validated depression scale were social dynamics of hearing loss and not objective audiometric testing. Such models could be useful in predicting depression scale scores at the point-of-care in conjunction with a standard audiologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助JY采纳,获得50
10秒前
欣慰的铭完成签到,获得积分10
21秒前
36秒前
56秒前
1分钟前
1分钟前
komorebi发布了新的文献求助10
1分钟前
丘比特应助komorebi采纳,获得10
1分钟前
Kashing完成签到,获得积分10
1分钟前
小燕子完成签到 ,获得积分10
1分钟前
叶也完成签到 ,获得积分10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
长情如音完成签到,获得积分10
1分钟前
1分钟前
六六完成签到 ,获得积分10
1分钟前
tree完成签到 ,获得积分10
1分钟前
子訡完成签到 ,获得积分10
2分钟前
坚强的纸飞机完成签到,获得积分10
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
浮游应助熊建采纳,获得10
2分钟前
2分钟前
浮游应助GGBoy采纳,获得10
2分钟前
善学以致用应助可爱丹彤采纳,获得10
3分钟前
悲凉的忆南完成签到,获得积分10
3分钟前
yxl完成签到,获得积分10
3分钟前
钟哈哈完成签到,获得积分10
3分钟前
可耐的盈完成签到,获得积分10
3分钟前
3分钟前
绿毛水怪完成签到,获得积分10
3分钟前
lsc完成签到,获得积分10
3分钟前
小fei完成签到,获得积分10
3分钟前
3分钟前
3分钟前
麻辣薯条完成签到,获得积分10
3分钟前
时尚身影完成签到,获得积分10
3分钟前
可爱丹彤发布了新的文献求助10
3分钟前
流苏完成签到,获得积分10
3分钟前
流苏2完成签到,获得积分10
3分钟前
岸在海的深处完成签到 ,获得积分10
3分钟前
俏皮凌蝶完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302321
求助须知:如何正确求助?哪些是违规求助? 4449504
关于积分的说明 13848409
捐赠科研通 4335689
什么是DOI,文献DOI怎么找? 2380484
邀请新用户注册赠送积分活动 1375488
关于科研通互助平台的介绍 1341703