Effect of aggrecan degradation on the nanomechanics of hyaluronan in extra-fibrillar matrix of annulus fibrosus: A molecular dynamics investigation.

细胞外基质 生物物理学 材料科学 椎间盘 阿格里坎 纤维 纳米力学 基质(化学分析) 化学 弹性蛋白 自愈水凝胶
作者
Shambo Bhattacharya,Devendra K. Dubey
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier]
卷期号:107: 103752- 被引量:3
标识
DOI:10.1016/j.jmbbm.2020.103752
摘要

Abstract Intervertebral Disc (IVD) Degeneration is one of the primary causes of low back pain among the adult population – the most significant cause being the degradation of aggrecan present in the extra-fibrillar matrix (EFM). Aggrecan degradation is closely associated with loss of water content leading to an alteration in the mechanical behaviour of the IVD. The loss in water content has a significant impact on the chemo-mechanical interplay of IVD biochemical constituents at the fundamental level. This work presents a mechanistic understanding of the effect of hydration, closely associated with aggrecan degradation, on the nanoscale mechanical behaviour of the hyaluronan present in the EFM of the Annulus Fibrosus. For this purpose, explicit three-dimensional molecular dynamics analyses of tensile and compressive tests are performed on a representative atomistic model of the hyaluronan present in the EFM. To account for the degradation of aggrecan, hydration levels are varied from 0 to 75% by weight of water. Analyses show that an increase in the hydration levels decreases the elastic modulus of hyaluronan in tension from ~4.6 GPa to ~2.1 GPa. On the other hand, the increase in hydration level increases the elastic moduli in axial compression from ~1.6 GPa in un-hydrated condition to ~6 GPa in 50% hydrated condition. But as the hydration levels increase to 75%, the elastic modulus reduces to ~3.5 GPa signifying a shift in load-bearing characteristic, from the solid hyaluronan component to the fluid component. Furthermore, analyses show a reduction in the intermolecular energy between hyaluronan and water, under axial tensile loading, indicating a nanoscale intermolecular debonding between hyaluronan and water molecules. This is attributed to the ability of hyaluronan to form stabilizing intra-molecular hydrogen bonds between adjacent residues. Compressive loading, on the other hand, causes intensive coiling of hyaluronan molecule, which traps more water through hydrogen bonding and aids in bearing compressive loads. Overall, study shows that hydration level has a strong influence on the atomistic level interactions between hyaluronan molecules and hyaluronan and water molecules in the EFM which influences the nanoscale mechanics of the Annulus Fibrosus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
buno应助22采纳,获得10
2秒前
赘婿应助TT采纳,获得10
3秒前
3秒前
3秒前
4秒前
Jenny应助赖道之采纳,获得10
6秒前
依古比古完成签到 ,获得积分10
8秒前
汎影发布了新的文献求助10
8秒前
小二完成签到,获得积分10
8秒前
9秒前
11秒前
顾矜应助长情洙采纳,获得10
11秒前
monere发布了新的文献求助30
11秒前
Xiaoxiao应助汉关采纳,获得10
13秒前
13秒前
汎影完成签到,获得积分10
14秒前
15秒前
Chen发布了新的文献求助10
17秒前
WW完成签到,获得积分10
17秒前
19秒前
hyjcnhyj完成签到,获得积分10
20秒前
英姑应助赖道之采纳,获得10
21秒前
23秒前
研友_LXdbaL发布了新的文献求助30
23秒前
思源应助单薄新烟采纳,获得10
24秒前
24秒前
25秒前
Zz完成签到,获得积分10
25秒前
Prandtl完成签到 ,获得积分10
27秒前
28秒前
zfzf0422完成签到 ,获得积分10
29秒前
上官若男应助jackie采纳,获得10
29秒前
29秒前
我是站长才怪应助Benliu采纳,获得20
30秒前
30秒前
zh20130完成签到,获得积分10
30秒前
30秒前
TT发布了新的文献求助10
31秒前
Star1983发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808