Effect of aggrecan degradation on the nanomechanics of hyaluronan in extra-fibrillar matrix of annulus fibrosus: A molecular dynamics investigation.

细胞外基质 生物物理学 材料科学 椎间盘 阿格里坎 纤维 纳米力学 基质(化学分析) 化学 弹性蛋白 自愈水凝胶
作者
Shambo Bhattacharya,Devendra K. Dubey
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier]
卷期号:107: 103752- 被引量:3
标识
DOI:10.1016/j.jmbbm.2020.103752
摘要

Abstract Intervertebral Disc (IVD) Degeneration is one of the primary causes of low back pain among the adult population – the most significant cause being the degradation of aggrecan present in the extra-fibrillar matrix (EFM). Aggrecan degradation is closely associated with loss of water content leading to an alteration in the mechanical behaviour of the IVD. The loss in water content has a significant impact on the chemo-mechanical interplay of IVD biochemical constituents at the fundamental level. This work presents a mechanistic understanding of the effect of hydration, closely associated with aggrecan degradation, on the nanoscale mechanical behaviour of the hyaluronan present in the EFM of the Annulus Fibrosus. For this purpose, explicit three-dimensional molecular dynamics analyses of tensile and compressive tests are performed on a representative atomistic model of the hyaluronan present in the EFM. To account for the degradation of aggrecan, hydration levels are varied from 0 to 75% by weight of water. Analyses show that an increase in the hydration levels decreases the elastic modulus of hyaluronan in tension from ~4.6 GPa to ~2.1 GPa. On the other hand, the increase in hydration level increases the elastic moduli in axial compression from ~1.6 GPa in un-hydrated condition to ~6 GPa in 50% hydrated condition. But as the hydration levels increase to 75%, the elastic modulus reduces to ~3.5 GPa signifying a shift in load-bearing characteristic, from the solid hyaluronan component to the fluid component. Furthermore, analyses show a reduction in the intermolecular energy between hyaluronan and water, under axial tensile loading, indicating a nanoscale intermolecular debonding between hyaluronan and water molecules. This is attributed to the ability of hyaluronan to form stabilizing intra-molecular hydrogen bonds between adjacent residues. Compressive loading, on the other hand, causes intensive coiling of hyaluronan molecule, which traps more water through hydrogen bonding and aids in bearing compressive loads. Overall, study shows that hydration level has a strong influence on the atomistic level interactions between hyaluronan molecules and hyaluronan and water molecules in the EFM which influences the nanoscale mechanics of the Annulus Fibrosus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助兴奋巧凡采纳,获得10
1秒前
2秒前
2秒前
心房子完成签到,获得积分10
2秒前
科研通AI2S应助sssssyq采纳,获得10
3秒前
生动的怜菡完成签到,获得积分10
3秒前
brj发布了新的文献求助10
4秒前
4秒前
4秒前
wyz发布了新的文献求助10
5秒前
小机灵鬼完成签到,获得积分10
5秒前
英姑应助不胜寒采纳,获得10
6秒前
cimu95完成签到,获得积分10
7秒前
小蘑菇应助Nelson采纳,获得10
8秒前
认真路灯完成签到 ,获得积分10
8秒前
情怀应助xiaoziyi666采纳,获得10
8秒前
ZZRR发布了新的文献求助10
8秒前
古德猫宁发布了新的文献求助10
9秒前
Hello应助5Hepburn采纳,获得10
9秒前
r日常发布了新的文献求助10
10秒前
马迦南发布了新的文献求助10
10秒前
范仪彬发布了新的文献求助10
12秒前
HAHA完成签到,获得积分10
12秒前
JamesPei应助生生不息采纳,获得10
15秒前
领导范儿应助生生不息采纳,获得10
15秒前
15秒前
16秒前
DE2022发布了新的文献求助10
16秒前
16秒前
wyz完成签到,获得积分10
16秒前
传奇3应助慕冰蝶采纳,获得10
17秒前
曾经若枫完成签到,获得积分20
18秒前
可爱的函函应助淺沫初晴采纳,获得10
19秒前
斯文败类应助dangpengyichuan采纳,获得10
19秒前
跳跃雯发布了新的文献求助10
19秒前
Nelson发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
xiaoziyi666发布了新的文献求助10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234027
求助须知:如何正确求助?哪些是违规求助? 2880431
关于积分的说明 8215492
捐赠科研通 2547980
什么是DOI,文献DOI怎么找? 1377371
科研通“疑难数据库(出版商)”最低求助积分说明 647869
邀请新用户注册赠送积分活动 623248